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FOREWORD 

A joint-service coordinated effort is underway to develop a computerized adaptive 
testing (CAT) system and to evaluate its potential for use in the military entrance 
processing stations as a replacement for the Armed Services Vocational Aptitude Battery 
(ASVAB) printed tests. The Navy Personnel Research and Development Center has been 
designated lead laboratory for this effort. 

This report, which was sponsored by the Commandant of the Marine Corps (MPI-20) 
and performed by the Office of Personnel Managment (OPM), is the fifth in a series being 
issued under the CAT project. It describes a theoretical foundation on which the adaptive 
administration of aptitude tests may be based, and is intended for use by professionals in 
the field of psychometrics.  The previous reports issued are listed below: 

1. McBride, 3. R. Computerized adaptive testing project; Objectives and reauire- 
ments (NPRDC Tech. Note 82-22), July 1982. ^ ^  

2. CroU, P. R. Computerized adaptive testing system design; Preliminary design 
characteristics (NPRDC Tech. Rep. 82-52), July 1982.  (AD-A118 ^^95)  

3. Wetzel, C. D., & McBride, 3. R. Influence of fallible item parameters on test 
information during adaptive testing (NPRDC Tech. Rep. 83-15), April 1983.  

i^. Moreno, K. E., Wetzel, C. D., & McBride, 3. R. Relationship between 
corresponding Armed Services Vocational Aptitude Battery (ASVAB) and comDuteri7ed 
adaptive testing (CAT) subtests (NPRDC Tech. Rep. 8V77\, Angn.:t igg^ ^  

This report was initially conceived and planned at OPM when tailored testing was 
proposed for federal civil service examining on a widespread basis. Dr. Neil 3. Dorans 
played a significant part in the original planning, outlining, and writing of early versions 
of the report. Several persons provided valuable reviews and comments on earlier 
versions of the report, including Professor Hubert E. Brogden of Purdue University 
Dr. Charles H. Anderson of OPM, and Professor Bert F. Green of the 3ohns Hopkins 
University. Editorial assistance was capably provided by Cynthia L. Clark of OPM, 
Washington, DC. ' 

The contracting officer's technical representative was Dr.  3ames R.  McBride. 

3.W.RENARD 3AMES W. TWEEDDALE 
Commanding Officer Technical Director 
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INTRODUCTION 
Tailored testing is a mode of pyschological testing where examinees interact with a computer to answer 

a series of questions, each prompted by the correctness or incorrectness of responses to previous questions. This 
mode of testing has become the focus of considerable activity during the past decade. The impetus for this 
activity has been the recognition of the potential of tailored testing to provide substantial benefits along with 
reductions in the overall cost of testing. Marked improvements in measurement, ease of administration, security 
of test materials, and examinee convenience are frequently mentioned as major potential benefits. Reductions 
in the overall costs of testing are possible because of recent and dramatic advances in computer technology. 

This activity has produced an extensive literature. For familiarity with its scope, the interested reader is 
referred to the proceedings of four conferences devoted either partially or completely to tailored testing (Holtzman, 
1970; Clark, 1976; Weiss, 1978, and Weiss, 1980). 

The preferred basis for tailored testing is latent trait theory. In the summer of 1977, the Journal of 
Educational Measurement published a thematic issue on the subject. This issue might also be consulted for 
further background. In particular, one article (Urry, 1977) deals exclusively with tailored testing. In this article 
the author reports the results of an empirical study where tailored testing was conducted until the reliability of 
the test scores from this process matched the reliability of a particular conventional paper-and-pencil test. It was 
found that tailored testing required 80% fewer items than the conventional testing to achieve the matched reliability. 

The particular algorithm used for the tailoring of tests in that empirical study will be derived, explained, 
and numerically illustrated in the present report. The algorithm is based on a three-parameter normal ogive 
submodel which, along with the two-parameter normal ogive submodel, will be formally derived in this report. 
These submodels are derived from the more familiar model for a single common factor. The three-parameter 
submodel is applicable to multiple-choice items. In certain circumstances, the data bases for multiple-choice 
items are now sufficient for the implementation of tailored testing. The data bases for free-response (short answer) 
items do not now enjoy this status. However, when tailored testing is implemented with multiple-choice data 
bases, the active involvement of the computer facilitates the development of free-response data bases. This 
involvement introduces the required flexibility into the scoring of items. Since the two-parameter normal ogive 
submodel is applicable to free-response (short answer) items, it then has possible future applications. Also, a 
discussion of the two-parameter submodel provides the necessary prologue to an understanding of the three- 
parameter submodel. 

In this report selection theory (Lawley, 1943) is used as the theoretical framework for the development 
of tailored testing algorithms. This framework possesses conceptual utility. The process of tailored testing is 
presented as analogous to selections and rejections on a series of continuous variables that are related to ability, 
the variable of primary interest. In this case, the series is purposefully chosen. The purpose is to obtain sub- 
populations that are homogeneous with respect to ability. The binary scores on items—one for a correct answer 
and zero for an incorrect answer—when placed in the perspective of the model for a single common factor, 
ability, are viewed as analogues of selection and rejection on continuous variables that are usually observed 
under this basic model. 

Given this theoretical as well as conceptual framework, the estimates of ability become the means of 
ability for the subpopulations that would have resulted from the purposeful series of selections and rejections 
indicated by the patterns of binary scores. The variances of these ability estimates become the restricted variances 
of ability for the resulting subpopulations. Precision in tailored testing is viewed as the analogue of severe 
restriction in range or homogeneity with respect to the variable of primary interest for the resultant subpopulations. 

The exposition in this report deals with the basic model; the normal ogive submodels that derive 
from this basic model; the tailored testing process; the tailoring algorithms that are derived from selection theory; 
and the basis for the control of these algorithms in an interactive tailoring system. This basis of control also derives 
from selection theory. 

In Chapter 1, the model for a single common factor will be reviewed. This basic model assumes that 
observed random variables can be decomposed into a common factor (true score) component, and a unique (error 
score) component. In Chapters 2 and 3 it will be assumed that normally distributed random variables, which 
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might be observed, completely determine the binary scores on items, that is, a zero for an incorrect answer and 
a one for a correct answer. Given the model for a single common factor, the manner of this determination gives 
rise to the normal ogive submodels, in particular, the two- and three-parameter cases. Some further consequences 
of binary scoring will be developed for each case. These developments incorporate brief reviews of univariate 
and multivariate normal distributions. Some important results are then obtained which are required in subsequent 
derivation. 

In Chapter 4 a brief introduction is provided for the tailoring process. In Chapter 5 the analogy is drawn 
between the assumed basis of binary scores and the process of selection or rejection. Tailored testing algorithms 
are then derived from selection theory for both normal ogive submodels. Each algorithm sequentially provides 
(a) the choice of item, (b) the ability estimate, and (c) the variance of the ability estimate. The principle of 
invariance is illustrated with respect to these algorithms. In Chapter 6, the recursive nature of the derived 
formulation is demonstrated; and the identity of this derived formulation to previously developed Bayesian 
procedures (Owen, 1975) is established. It is hoped that these non-Bayesian developments will improve the 
accessibility of these procedures for psychometricians who are comfortable with selection theory, yet unfamiliar 
with Bayesian statistics and terminology. In Chapter 7 the implications of selection theory for termination rules 
in tailored testing are discussed; and the relationship between equiprecision in ability estimation as achieved 
through termination rules and tailored test reliability is developed. Termination rules are derived from a particular 
submodel given all of its various assumptions. One then has the means of assessing the validity of the particular 
submodel and all of its various assumptions. These rules forecast or predict various observable results. The 
results predicted by the termination rules can be compared with those actually obtained. In the aforementioned 
study (Urry, 1977), the obtained results were predicted very well from the termination rules. In this instance the 
three-parameter normal ogive submodel was, thus, found to be valid for multiple-choice items. A valid submodel 
ensures that termination rules are informative; and informative termination rules are essential to the development 
of an interactive tailored testing system. This testing is conducted individually; but normative results must be 
predictable in order to complete the testing of each examinee effectively. The developments in this chapter will 
be given further elaboration in Part II, a subsequent report. This elaboration will enable multiple ability applications 
of tailored testing. In Chapter 8, a numerical example is provided for an individually tailored test. 

A subsequent report will treat ability estimation in data sets from conventional paper-and-pencil testing; 
item parameter estimation for data sets from both conventional and tailored testing; multiple ability applications 
of tailored testing; and some indispensable allied topics—namely, simulation research for both the unidimensional 
and multidimensional cases and procedures for psychometric quality control. While this report is concerned mainly with 
basic developments, the subsequent report will deal more directly with applied considerations. 

In order to understand this report, the reader should have a thorough familiarity with scalar and matrix 
algebra. A working knowledge of calculus would be helpful; but the expositions, particularly in Chapters 2, 3 
and 5, attempt to avoid this requirement by summarizing and illustrating the important results from calculus. 
The derivation of these results is presented subsequently in sections entitled "Mathematical Proofs." In Chapter 
5, the results of lengthy and detailed algebraic developments will also be summarized and illustrated. These 
lengthy developments will likewise be presented in the section entitled "Mathematical Proofs." The "Mathe- 
matical Proofs" sections may then be omitted by the reader without loss of continuity. 

Xll 



1. THE BASIC MODEL 

1.1  A Model for a Single Common Factor 

The process of tailored testing as described here entails the use of a simple model with straightforward, 
perhaps strong, assumptions. The model involves a single common factor. It can be viewed as a variant of a 
special case of a general model for the analysis of covariance structures (Joreskog, 1978), specifically a model 
for "congeneric" items. 

The application of this model to test items requires some additional consideration that will be given in 
Chapters 2 and 3. Derivations in the present chapter will show that the common factor model assumes observed 
variables to be continuous variables; whereas test items typically produce binary variables. That is to say, items 
are scored zero or one alternatively denoting incorrect or correct answers. In order to apply the model to binary 
items, it is then necessary to assume that continuous random variables underlie and completely determine the 
binary random variables represented by binary item scores. In Chapters 2 and 3, continuous random variables 
are assumed to completely determine the binary random variables produced by both the free-response (short 
answer) item and the more familiar multiple-choice item. The manner in which a continuous random variable 
completely determines a binary random variable for a free-response item leads to the two-parameter normal ogive 
submodel. This submodel will be derived and discussed in Chapter 2. The manner in which a continuous random 
variable completely determines a binary random variable for a multiple-choice item leads to the three-parameter 
normal ogive submodel. This submodel will be derived and discussed in Chapter 3. These following chapters 
will provide examples of continuous random variables for free-response and multiple-choice items where the 
normal ogive submodels are given separate treatment. 

In this report, standard notation will be observed. Random variables, whether continuous or discrete, and 
random vectors will be denoted by capital letters. Lowercase letters will denote realizations or scores on the 
random variables and random vectors. 

Let Z^ be designated as the continuous random variable basic to the binary scoring of item g. Each 
realization of Z^,, C,^, is a score that is assigned to a particular answer to item g. 

The location of a particular individual / on the score continuum representing the different values of the 
random variable for item g on a particular occasion o is symbolized by ^^,„. In the classical test theory formulation 
of Lord and Novick (1968), ^j„„ is decomposed into a true score component, r^,, and an error score component, 
o 

Igio   =   V   +   ^mo- (1.1.1) 

Following Lord and Novick, the true score component of person fs score, T^,,, is defined as the expected value 
of ^^,„ over repeated administrations of item g to individual / under identical testing conditions 

T„ = 'g„4,.„. (1.1.2) 

The measurement error on occasion o is the simple difference, 

V' = ^s'o - V- (1-1-3) 

which is in mean deviate form because of (1.1.2). Some statistically desirable consequences of these particular 
true score and error score definitions are proved in Lord and Novick (1968, pp. 29-50). 

The fundamental assumptions that characterize the model are (1) that the true score components of each 
continuous variable determining the binary scores on item g are linear transformations of a common underlying 
latent trait or factor, (2) that scores on this latent trait are normally distributed in the population of potential 



examinees, and (3) that measurement error is also normally distributed in the population of potential examinees. 
For item g, these assumptions are expressed formally via 

T, = M'     . ,                                                      (1.1.4) 

:  ;..      e ~ N[ix(e), a^iO)], ;                                                     (1.1.5) 

and 

A^ ~ NliJiiAg), c^(A^)], '  >:  ■   ■                                    (1.1.6) 

where T^ and zl^, are the true score and error variables for the continuous variable basic to item g, O is the latent 
trait variable with mean /U.(0), variance a-(0), and /3^, is the weight that transforms the latent trait metric into 
the true score metric for the continuous variable underlying item g. Equation (1.1.4) asserts that true score on 
the continuous variable determining the binary scores on item g is the product of a weight /3^, and the score on 
the latent trait 0; while equation (1.1.5) indicates that the scores on the latent trait 0 are distributed normally 
with a mean of ixiO) and a variance of cr(0). Asserted in (1.1.6) is that the error variable associated with the 
continous variable which determines the binary scores on item g is distributed normally with a mean of jxiA ) 
and a variance of cr(A^). A set of equations similar to (1.1.4) and (1.1.6) exists for each of the remaining 
p - 1 items. All p sets of equations can be expressed compactly in matrix notation as 

T = pO (1.1.7) 

and . ■.'••• 

■   '      A'-N[^{A),XiA,A)] ■' (1.1.8) 

where T is a p-by-l true score vector, J is a p-hy-l measurement error score vector, /3 is a/?-by-l vector of 
transformation weights, fi{A) is a p-by-l vector of measurement error means, and S(A,A) is ap-hy-p matrix of 
measurement error variances and covariances. Equation (1.1.7) indicates that the vector of true scores on the 
continuous variables determining the binary item scores is the product of the vector of weights, /3, for these 
continuous variables and the scores on the latent trait 0; while (1.1.8) asserts that the error score vector A is 
distributed multinormally with a mean vector fi{A), and a variance-covariance matrix S(A,A). 

The definitions of true score and error score in (1.1.1) and (1.1.2) and the normality and linearity 
assumptions in (1.1.5), (1.1.7), and (1.1.8) yield the following results; 

fJi-(A) = 0 (mean error score on every item is zero); '   ;      ' (1-1.9) 

p(0,Ag) = 0 for all g, (error scores and latent trait scores are uncorrelated); and (1.1.10) 

piA^,Ai,) = 0 for all g and h where gi=h, (error scores on different items are uncorrelated). (1.1.11) 

As a consequence of (1.1.11), X(A ,A) is a diagonal matrix. The linear independencies evident in (1.1.10) and 
(1.1.11) imply stronger statistical independencies under the stated normality assumptions. 

Since linear combinations of normally distributed variables are also normally distributed (Anderson, 
1958), it follows from 

that 

fi 9 + A (1.1.12) 

Z ~ NlpfxiO), X(Z,Z)]. (1.1.13) 

or, in words, that the p-by-l vector Z is distributed multinormally with a mean vector provided by the vector 
and scalar product (ip{0) and with a variance-covariance matrix X{Z,Z). This matrix contains the variances 
and covariances of the continuous variables Z^ that determine the binary item scores. 



The p-by-p variance-covariance matrix S(Z,Z) can be decomposed into 

SiZ,Z) = pp' 0^(6) + S{A,A). (1.1.14) 

Equations (1.1.12) and (1.1.14) can be immediately recognized as the fundamental equations of a linear 
common factor model with a single common factor, O. Since S(A,A) is a diagonal matrix, the off-diagonal 
element in the ^^th row and hlh column of S(Z,Z), cr(Z^,Zi,), is 

,      . aiZ^.Z,,) = p^p^criO). (1.1.15) 

Note that (1.1.12) and (1.1.14) are also standard equations from simple linear regression where the Z, 
are the criteria, 0 is the predictor, and the A^ are the errors of prediction. As such /3 is ap-by-l vector of least 
squares regression weights, 

......    , . /3 = [DiagI(Z,Z)]V(Z,„e)l(7(e)]-' (1.1.16) 

where the ^th diagonal element of the p-by-p diagonal matrix, [Diag X(Z,Z)], is the variance of Z^, cr(Zg), 
and p(Zg,0) is a p-by-\ vector of correlations between the Z^ and O. In addition, the g\h diagonal element of 
J(4,4) can be expressed as : ,, 

(r{A^) = (r(Z^)\\  - (r(Z^,0)\.      -       ' (1.1.17) 

If the Z^ and O are scaled to a mean of zero and a standard deviation of unity, (1.1.16) and (1.1.17) 
reduce to the forms , 

/J = p{Z„e) (1.1.18) 

and ; 

,   .. o^{A^) = 1 - riZ„e). '.     . ., (1.1.19) 

Note that the measurement error variance in (1.1.19) is also the conditional variance of Z^ given 6, 

a^(Z\,) = a-'(Zj 0), (1.1.20) 

and that this conditional variance is the same at all levels of the continuous variable O, that is the errors of 
measurement are homoscedastic as a consequence of the normality assumptions. In addition, substitutions from 
(1.1.18) into (1.1.15) yield 

a(Z^,Z,) = p{Z^,Z,,) = p{Z^,0) p{Z„0) (1.1.21) 

because of the unit scalings of the continuous variables Z^ and 6. Equations (1.1.18) through (1.1.21) can be 
recognized as aspects of the traditional correlational formulation of the model for a single common factor, and 
can also be viewed as characteristic of a model for "congeneric" items. 

Notice that specific factors for items are not defined in this model. As a result, item-specific factors 
would be included in the measurement error. 



2.  EFFECTS OF BINARY SCORING: A SUBMODEL 
FOR FREE-RESPONSE ITEMS 

2.1  The Two-Parameter Normal Ogive Submodel 

Suppose, as did Samejima (1969), that the answers to a free-response (short answer) item can be placed 
in order based on the degree of attainment of a proper solution to the problem posed by the item. For p test 
items designed to measure the same ability, such an ordering would generate p item score continua. When the 
scores along these continua are associated with the relative frequencies of individuals producing each particular 
answer, continuous random variables such as the Z^ of Chapter 1 would be the result. Now suppose that a 
decision is made to separate the ordered answers on each of the p item continua into two mutually exclusive 
sets, acceptable (correct) and unacceptable (incorrect). This separation entails the dichotomization of the p 
continua. Let jg symbolize the point of dichotomization along the continuum Z^. Dichotomization of Zg is 
represented formally by a rescaling of the continuous variable Z^, into a binary variable Ug. By convention, 
correct answers are scored one, while incorrect answers are scored zero. Hence Ug has two possible realizations: 

Ug =  1 When (,g ^ jg (correct answer produced) 
Ug = 0 When [,g < jg (incorrect answer produced) 

Note that the dichotomization of Z^, completely determines the random variable U^. This dichotomization 
also produces two additional random variables. Since the Zg are affected by measurement error, so are the {/„. 
The transformation of Z^, into Ug thus results in a transformation of true score metric. In effect, a new true score 
variable Tg and a new error score variable Eg are produced implicitly by the Zg into U^ transformation. 

For individual / on testing occasion o, tgi represents the individual's true score on binary item g, while 
egig is the individual's error score on binary item g. Again, true score is defined as the expected value of the 
Ugig, which are realizations of Ug for individual /, over testing occasions o, that is, 

t,i = %,Ug^„      ' (2.1.1) 

while error score is defined as ' ' 

<^gio = Ugio - tgi- (2.1.1) 

Under the definition of true score presented in (2.1.1), Tg is the least squares estimate of Ug given 6. 
All individuals of ability equal to that of individual /, 6 = 0,, have identical true scores, tg, that is 

tg = %{Ug\ e = 0,) ■■' ■' (2.1.3) 

which is a specific realization of the random variable • • 

Tg = %(Ug\e). (2.1.4) 

The expectation relationship in (2.1.4) defines T^ as the least squares regression function of U^ onto 6. 
At this point, a functional form for the regression of Ug onto 6 must be determined. Due to the normality 

assumptions stated in Chapter 1, this functional form is the item characteristic curve for the two-parameter normal 
ogive of latent trait theory (Lord & Novick, 1968). The derivation of this form requires some elementary calculus 
and knowledge of statistical expectations. 



By definition, the expected value of a discrete random variable, such as U^, is the sum of the products 
between each realization of U^ and its relative frequency. The expected value of U^ given 6 is, 

I 

T^ = % (U^ \d) =     ^     u^, Pr(M,,, I B) = (0) ?v(u, = 0 | 0) + (1) Pr(M,, =  1 | 0) 
,    "^'^° ' (2.1.5) 

= ?v{u^ =  1 I 6») 

where Pr{u^ = 0 | 0) and ?r(u^ = 1 | (?) are the probability of an incorrect answer on item g given 6 and the 
probability of a correct answer on item g given 6 respectively. Thus, the item true score random variable, which 
is the least squares estimate of U^ given B, is equivalent to the probability of a correct answer on item g given 
d. Obtaining an expression for ?r(u^ = 1 | 0) provides us with the functional form for the regression of U. onto 
B. 

Following the notation used by Lord and Novick (1968), Pr(«, = 1 | 0) is simply the item characteristic 
curve for item g, P^{9) 

PrK, =  \\e) = P^{B). (2,1.6) 

From the definition of U^ as the result of a binary rescaling of Z^,, it is known that 

P,(e) = Pr(M, =  1 I 0) = Pr(Z, > y^ \ B). (2.1.7) 

Therefore, the proportion of the conditional distribution of Z^ that is above the point of dichotomization y equals 
the true score for U^ given B. The regression function T^ can be viewed as the curve that connects these'various 
conditional proportions that can be computed at each value of the continuous variable O. 

Due to the normality assumptions stated in Chapter 1, the conditional distributions of Z^ are normal 
Thus, the cumulative normal distribution function 0[*] can be used to obtain the probability of a correct answer 
to item g given B. To use the cumulative normal distribution function, scores on the conditional distribution of 
Zg given B must be converted to a mean of zero and a variance of unity; and y^, the point of dichotomization 

on Zg, must be rendered in the scale of the standardized conditional distribution. Let lg{B) represent scores that 
are standardized to a mean of zero and a variance of unity; and let y^(0) represent the point of dichotomization 
on the Zg{B). 

For a given value of O, the mean of Z  is 

tx(ZjB) = p{Ze)B        • (2.1.8) 

and the variance of Z^ is 

CT-'(Zje) = 1 - p-'(Z,0). (2.1 9) 

These relationships flow from the normality assumptions of Chapter 1 and the fact that the unconditional 
distributions of both 0 and Z^ have been scaled to a mean of zero and a variance of unity. Equations (2.1.8) 
and (2.1.9) enable us to define 1^{B) as 

■                     '          ^(zj0)       [1 - p2(z,,e)]5- (2.1.10) 

The relationships in (2.1.8) and (2.1.9) also enable us to define y/0) as 

- ■                                      (^(Z, I B)           [1  - p2(Z,,0)]5 ■:              (2.1.11) 



where simplification of the expression in (2.1.11) is possible by introducing and defining the item parameters 
a^, item discriminatory power, and h^, item difficulty, as 

P(Z,,0) 
[1  - pHZ,,e)]- 

(2.1.12) 

and 

b, = -^^ ■ (2.1.13) 
'      piZ,,e) 

Given (2.1.13), an explicit solution for Yj, is provided by . .^ 

y, = p(Z„e)b^. (2.1.14) 

Substitutions from (2,1,14) and then (2.1.12) into the rightmost equality in (2.1.11) lead to 

y/e) =  - a^iO - b,) ;■;,   ,       . (2.1.15) 

as the point of dichotomization on Z^{6). 
In terms of Z^(0) and y^(6), the probability of a correct answer to item g given 6 can be expressed as 

P^id) = PrjZ,(0) 2^ y,m ■ (2.1.16) 

■    V =   f      (277)--^exp{-.5[4(0)j2}rf^/0) 

or, equivalently, due to symmetry of the normal distribution function, ...  ' 

P,i6) =   J_      i2Tr)-'cxp{-.5l^^{0)V}dC,{e). (2.1.17) 

Given (2.1.15), it is to be noted that i 

P,(0) = <P[- y,(0)] = d>[fl,(0 - b^)\ (2.1.18) 

where $[*] is by definition the cumulative normal distribution function as conventionally expressed in (2.1.17) 
as the area in the standard normal distribution between negative infinity and, in this case, negative y^{B). 

The Parameters 

In (2.1.18), one has an expression for the item characteristic curve, the item true score function T^, and 
the regression of the free-response, binary item V^ onto latent ability 0. This functional form gives the probability 
of a correct answer on item g as a function of the continuous variable O. The parameters of this expression are 
a^ and b^, which are defined in (2.1.12) and (2.1.13). 

A fuller appreciation of these item parameters is acquired through examination of Figures 2.1.1 and 2.1.2. 
Latent ability, Q, is portrayed along the abscissa in both figures. Portrayed along the ordinate in Figure 2.1.1 
is the dichotomized continuous variable Z^,. The point of dichotomization on Z^,, 7^, is located on the ordinate. 
The line segment extending from y^ across the figure, parallel to the abscissa, divides each conditional distribution 
of Z^(0) at y^ into two mutually exclusive areas, P^{d) and 2^(0), which represent the probabilities of correct 



and incorrect answers to item g, given 0, where the point of dichotomization, y,, has been rendered in the scale 
ofZ,(0)as y^(6l). 

The line traversing the figure at an angle of less than 45 degrees with the abscissa represents the linear 
regression of Z^ onto O. When, as in this case, both 0 and Z,, are scaled to a mean of zero and a variance of 
unity, the slope of this linear regression is p(Z^,0), the correlation between Z^ and 6. 

The item parameter a^ is defined in (2.1.12) as the ratio of the slope of the regression of Z, onto 0 to 
the standard deviation of the conditional distributions of Z^„ which is the same at all levels of ©"due to the 
normality assumptions of Chapter 1. It may be observed that the squaring of a^ yields a signal-to-noise ratio for 
the linear regression of Z^ onto 0, 

pHz,,e) 
- pHz^,e) (2.1.19) 

Notice in Figure 2.1.1 where the horizontal line extending from y^ intersects the line of regression of 
slope p(Z^,0). The projection of this point of intersection onto the latent trait continuum defines the second 
parameter, b^. Since the conditional distributions of Z^, are symmetrical around the line of regression, the total 
area of the conditional probability distribution of Z, at 6» = b^ is halved by the line extending from y. across 
the figure. Hence, at 0 = b^, P^(0) = Q^(e) = .5 where Q^iO), the complement of P^,(0), is defined by 

Qm = 1 p.m 
y..w 

(27i)--^exp{-.5[4(0)]2}4(e) 

= 'J'(y,(0)J = <P[~a^{e - bg)] (2.1.20) 

which yields the probability of an incorrect answer to item g. Again 0[*] is by definition the cumulative normal 
distribution function, or the area under the standard normal curve between negative infinity and   in this case 

II   = 1 (Shaded / 

II   =0 (Unshaded 

Figure 2.1.1.  Hypothetical relations among the item continuum Z^, the free-response, binary item U    and the 
latent trait 0. -' A" 



Figure 2.1.2 represents the other regression of interest in this submodel, the nonlinear regression of the 
binary item U^ onto the continuous latent trait, O. From (2.1.5) through (2.1.7) it is known that the regression 
of U, onto O is represented by f ^,(6), the probability of a correct answer to item g given 9. Hence the curve of 
regression in Figure 2.1.2 may be obtained by computing the areas of the conditional distributions of Z^, given 
6 at levels of 6, such as those depicted by the shaded portions in Figure 2.1.1, and then plotting this infinite 
number of areas against the abscissa to obtain Figure 2.1.2. In practice integral calculus is used to make the 
transition from Figure 2.1.1 to Figure 2.1.2. 

Example 2.1.1. Item g as depicted in Figure 2.1.1 can be used for the purpose of numerical 
illustration. The slope of the regression of Z^, onto 6, %(Z^ \ 9), is .90. This value is also p(Z^,0) 
because both Z^, and 0 are depicted as distributed with a mean of zero and a variance of unity. 
Thus item discriminatory power, a^, as given by (2.1.12) is 2.0647. In Figure 2.1.1 the ordinate 
and abscissa are both portrayed for the range of values from -3.0 to +3.0. The projection of 
the point of intersection of the line segment extending horizontally through y^ and the line of 
regression, %{Z^ \ 9), onto the abscissa, occurs at a value of - .375. Thus b^ is equal to - .375. 
Remember the conditional distributions of Z^, given 6 are symmetric about their means, which 
coincide with the line of regression, 'i{Z^ \ 0);'and by definition, at 0 = b^, Pf,{bf,), the probability 
of a correct answer to item g is .5, as indicated in Figure 2.1.2. 

Example 2.1.2. In Figures 2.1.1 and 2.1.2, 9' has the value of - 1.50. When y^i9) of 
(2.1.15) is evaluated at 9\ it is found that y^(9') equals 2.3228. The area above yi,(9') onZ^X^'), 
the standardized conditional distribution of Z^, given 9', is provided by (2.1.18) as .0101. This 
value of P^{9') is represented by the size of the shaded area in the standardized conditional 
distribution Z^,(0') as depicted in Figure 2.1.1. This value is the probability of a correct answer 
to item g at a standard ability score of 6' or - 1.50. Hence, a point has been placed in Figure 
2.1.2 with the coordinates of .0101 on the ordinate, Pf,(9), and 9', - 1.50, on the abscissa. 

S{Ug\e) = Pg{e) 
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Figure 2.1.2. The item characteristic curve or the regression of a free-response, binary item Ug on the latent 
trait 6. 



Example 2.1.3. In Figures 2.1.1 and 2.1.2, d" has the value of +.75. When y^id) of 
(2.1.15) is evaluated at 0", it is found that y^id") equals -2.3228. The area above y^(V') on 
Zgid"), the standardized conditional distribution of Z^ given 0", is given by (2.1.18) as .9899. 
This value of P^(0") is represented by the size of the shaded area in the standardized conditional 
distribution 1^(0") as portrayed in Figure 2.1.1. This value represents the probability of a correct 
answer to item g at a standardized score of ff'ov + .75. Again, a point has been placed in Figure 
2.1.2 with the coordinates of .9899 on the ordinate, P^(0), and 0", + .75, on the abscissa. 

The item characteristic curve of Figure 2.1.2 can be constructed by repeating the numerical process 
illustrated in Examples 2.1.2 and 2.1.3 for a sufficient number of points equally spaced on the abscissa. It is 
often helpful to be able to inspect the item characteristic curves for various items given their parameters. These 
item characteristic curves can be conveniently produced for this purpose through the use of a plotter and the 
formulation as illustrated for the arbitrary points 0' and 0" for a free-response item g. 

Examination of Figure 2.1.2 provides us with additional information about the latent trait item parameters 
"K ^"^ ^g- I" mathematical terms, bg is the value on the latent ability continuum corresponding to the point of 
inflection on the item characteristic curve, and a^ is proportional to the slope of the item characteristic curve at 
its point of inflection. As a value expressed on the G continuum, b^ is often referred to as the item location 
parameter. Note that as the location of the curve shifts to the right along the O continuum, bg increases, requiring 
greater ability to maintain the same probability of successful performance on the item. Hence, b^ is most commonly 
known as the item difficulty parameter. 

The parameter a^ indicates how well the item discriminates between levels of ability that are slightly 
above and below 6 = b^. As a^ gets larger, the slope of the curve becomes steeper and the discrimination 
between ability levels close to b^ increases. In contrast, flatter curves have lower values of a^, reflecting coarser 
measurement over a broader range of ability. Thus a^ is most commonly known as the parameter of item 
discriminatory power. For other discussion of these two parameters. Lord and Novick (1968) and Hambleton 
and Cook (1977) can be consulted. 

2.2 Further Consequences of the Submodel 

Given the basic model from which the two-parameter normal ogive submodel is derived, it is known that 
the joint distribution of Z^, and O is bivariate normal. This condition of bivariate normality allows the derivation 
of various convenient mathematical expressions. The derivations for these expressions follow from defining 
relationships within the bivariate normal distribution. In this section, these expressions will be presented and 
numerically illustrated, using free-response item g as portrayed in Figure 2.1.1 for illustrative purposes. These 
expressions will include the mathematical formulation for: 

1. The unconditional probabilities for the realizations of U^. 
(a) The probability of a correct answer to item g, PT(U^ = 1). 
(b) The probability of an incorrect answer to item g, Prfu^ = 0). 

2. The conditional means of Z^, given the realizations of U^. 
(a) The mean of Z^ given a correct answer to item g, tx(Zg | M^, =  1). 
(b) The mean of Z^, given an incorrect answer to item g, \x{Z^ \ u^ = 0). 

3. The conditional variances of Z^, given the realizations of U^,. 
(a) The variance of Z^, given a correct answer to item g. cr(Z^ | u^ =  1). 
(b) The variance of Z^, given an incorrect answer to item g, cr{Zg \ u^ = 0). 

4: The least squares estimators of ability given the realizations of U^. 
(a) Specific case. 

(1) The mean of O given a correct answer to item g, tJi{0\ u^ =  \). 
(2) The mean of 6 given an incorrect answer to item g, ix{6 \ u^ = 0). 

(b) General case. 
(1) The mean of 0* given a correct answer to item g, ix(Q*- \ u^ = 1). 
(2) The mean of O* given an incorrect answer to item g, ix(0* \ u^ = 0). 

These expressions will be derived in Section 2.3. For those readers seeking a general understanding. Section 
2.3 may be omitted without loss of continuity. 



The Unconditional Probabilities for the Realizations of Ug 

The binary random variable U^ can realize one of two possible values. In the case of a correct answer 
to free-response item g, u^, the realization of the binary random variable U^,, equals one; or the realization of 
U^, Ug, equals zero in the case of an incorrect answer to item g. 

The Probabilit\ of a Correct Answer to Item g, Priu^ = 1). This unconditional probability, most com- 
monly known as the p-value for item g, is designated as P^. A convenient expression for this probability is 

Pr(M, =  \) = P, = m-y,] • (2.2.1) 

where cPl-yJ is, by definition, the cumulative normal distribution function evaluated for the argument which 
is the negative of y^,, the point of dichotomization on the continuous variable Z^,. This point of dichotomization 
was defined in (2.1.14) as 

y, = p(Z,,0)fo,. ■ ■• (2.2.2) 

In (2.2.2), piZ^,0) is the correlation between the continuous variables Z,, and 0, and b^ is the item difficulty 
parameter. 

Example 2.2.1. From Example 2.1.1, it is known that p(Zj,,0) is .90 and that bg is -.375 
for item gas depicted in Figure 2.1.1. It is found through the use of (2.2.2) that 7^, equals -.3375. 
When P^ of (2.2.1) is evaluated for y^ equal to - .3375, it is known that (p[ - yj, the cumulative 
normal distribution function given the argument - y^, equals .6321. This value of P^ represents 
the size of the shaded area in the marginal distribution of Z^ as portrayed along the ordinate in 
Figure 2.1.1. Notice that this value .6321 is the probability that ^^ is equal to or greater than y^, 
or, synonomously, the probability of the realization that u^ equals one. 

The Probability of an Incorrect Answer to Item g, Pr{Ug = 0). This unconditional probability is designated 
as 2?- A convenient expression for this probability is 

Pr(M, = 0) = e, = <Ply,] (2.2.3) 

where <;f'[yj is, by definition, the cumulative normal distribution function given the argument y^, and y^, the 
point of dichotomization on the continuous variable Z^, is provided by (2.2.2). 

Example 2.2.2. It is known from Example 2.2.1 that y^ is - .3375 for item g as presented 
in Figure 2.1.1. When Q^ of (2.2.3) is evaluated given y^ equal to -.3375, it is found that 
$[-yJ, the cumulative normal distribution function given the argument y^, is equal to .3679. This 
value of Q^ represents the size of the unshaded area in the marginal distribution of Z^, as portrayed 
along the ordinate in Figure 2.1.1. Notice that this value .3679 is the probability that ^^, is less 
than y^, or, synonomously, the probability of the realization that u^ equals zero. 

If y^, were actually the cut score on an observed continuous variable Z^,, then P^ would be the selection 
ratio or the probability of being selected; and Q^ would be the probability of being rejected. There exists then 
an analogous relationship between the binary scores on item g, either a one or a zero, and selection or rejection 
on an observed continuous variable. 

The Conditional Means of Zg Given the Realizations of L/g 

The mean of Z^, can assume only one of two possible values. In the case of a correct answer to free- 
response item g, ttg, the realization of the binary random variable U^, equals one. Thus the mean of Zg given a 
correct answer to free-response item g is designated /.i (Z, | u^ = I). In the case of an incorrect answer to free- 
response item g. u^, the realization of the binary random variable U^, equals zero. Thus the mean of Z,, given 
an incorrect answer to free-response item g is designated as /x (Z^, | u^ = 0). 

The Mean of Z^ Given a Correct Answer to Item g. /A(Z^, | U^ = 1). A convenient expression for this 
mean is given by 



M2J«, =1) = -r^. (2.2.4) 
s 

In (2.2.4), (/)(-y^,) is the density of the standard normal distribution at y^, or 

0(7,) = (277)-''exp(-.5 7^) (2.2.5) 

where y,, the point of dichotomization on the continuous variable Z,, is provided by (2.2.2); and P, is the 
unconditional probability of a correct answer to item g as given by (2.2.1). 

Example 2.2.3. In Example 2.2.1. it was found that y^ equalled -.3375 for item g as 
depicted in Figure 2.1.1. When (2.2.5) is evaluated for y, equal to -.3375, it is known that 
(/)(- .3375), the density of the standard normal distribution evaluated at y^,, is .3769. In Example 
2.2.1, it was found that P^ equalled .6321. Evaluating (2.2.4) with these values for cl>(y^) and 
P^, it is known that the mean of Z^, for the subpopulation obtaining a correct answer on this item 
g, )x(Z^ I Ug = 1), is .5963. Remember that the range of the continuous variable Z^ as depicted 
in Figure 2.1.1 is from -3.0 to +3.0. This value, .5963, represents the mean of the shaded 
portion m the marginal distribution of Z,. The reader can judge the accuracy of this value through 
visual inspection of Figure 2.1.1. 

The Mean ofZ^ Given an Incorrect Answer to Item g, yLi(Z,, | «, = 0). A convenient expression for this 
mean is provided by 

MZJ«, = 0) =   - —-^ (2.2.6) 

where 0(y^,), the density in the standard normal distribution evaluated at y^,, is defined in (2.2.5) and Q,, the 
unconditional probability of an incorrect answer to item g, is provided by (2.2.3). *' 

Example 2.2.4. For the item presented in Figure 2.1.1, it was found in Example 2 2 3 
that 4>{y^) equalled .3769 and in Example 2.2.2 that Q^ equalled .3679. When (2.2.6) is evaluated 
for these values for 4>{y^) and Q^, it is known that the mean of Z^, for the subpopulation obtaining 
an mcorrect answer on this item g, /j,(Z^, | u^ = 0), is - 1.0245. This value, - 1.0245, represents 
the mean of Z, for the unshaded portion in the marginal distribution of Z^ as portrayed in Figure 
2.1.1. The reader can judge the accuracy of this value through visual inspection of Figure 2.1 I 
The marginal distribution of Z, is depicted in Figure 2.1.1 as ranging in value from -3.0 to 

If y^ were actually a cut score on an observed variable Z,, then ^(Z, | u^ = 1) would be the mean of 
Zg for the subpopulation explicitly selected on this variable. Similarly, /x(Z^ | u], = 0) would be the mean of 
Z^ for the subpopulation explicitly rejected on this variable. 

The Conditional Variances of Zg Given tlie Realizations of L/g 

The variance of Z, can assume only one of two possible values. For a correct answer to free-response 
Item g, the realization of the binary random variable U^, u^, is one. Hence, the variance of Z given a correct 
answer to free-response item g is designated a^iZ^ | M, =  1). For an incorrect answer to free-response item g 
the realization of the binary random variable U^, u^, is zero. Hence, the variance of Z,, given an incorrect answer 
to free-response item g is designated o^Z^ \ u^ = 0). 

The Variance of Z^ Given a Correct Answer to Item g. a^(Z^ \ u^ = 1). A convenient expression for 
this variance is given by 

^(Z, I „^ = 1) = 1 _ ^(2i) 
P, 

<t>iyJ 

P, 
T< (2.2.7) 

where y^, the point of dichotomization on the continuous variable Z^, is provided by (2.2.2); 4,{y^), the density 
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in the standard normal distribution evaluated at y^, is provided by (2.2.5); and P^, the unconditional probability 
of a correct answer to item g, is given by (2.2.1). 

Example 2.2.5. It is known from Example 2.2.1 that y^ equals -.3375 and P^ equals 
.6321 for item g as presented in Figure 2.1.1. It is further known from Example 2.2.3 that 4>{y^)   ^ 
equals .3769. When (2.2.7) is evaluated with these values, it is found that the variance of Z^ 
given a correct answer to this item g, cP-{Z^ \ u^ = 1), equals .4432. The square root of this 
value, .6658, thus represents the standard deviation of Z^, given a correct answer to this item g. 
aiZ, 1). The value of .6658 represents the standard deviation for the shaded area of the 
marginal distribution of Z^, as depicted along the ordinate in Figure 2.1.1. 

The Variance ofZ^ Given an Incorrect Answer to Item g, cr^iZ^ 
this variance is provided by 

0). A convenient expression for 

a^(Z, I u„ = 0) = '/'(y,) 
e. y., (2.2.8) 

where y^,, the point of dichotomization on the continuous variable Z^, is provided by (2.2.2); (^(y^,), the density 
in the standard normal distribution evaluated at y^, is yielded by (2.2.5); and Q^, the unconditional probability 
of an incorrect answer to item g, is given by (2.2.3). 

Example 2.2.6. For item g, as depicted in Figure 2.1.1, it is known from Example 2.2.1 
that y^ equals -.3375. It is further known from Example 2.2.2 that Q^, equals .3679 and from 
Example 2.2.3 that </)(y^,) equals .3769. When (2.2.8) is evaluated with these values, it is found 
that the variance of Z^, given an incorrect answer to item g, cr{Z^ \ u^ = 0) is .2962. Thus, the 
square root of this value, .5443, represents the standard deviation of Z^ given an incorrect answer 
to this item g, cr{Z^ \ u^ = 0). The value .5443 represents the standard deviation of the unshaded 
portion of the marginal distribution of Z^ as portrayed along the ordinate in Figure 2.1.1. 

The Least Squares Estimators of Ability Given the Realizations of Ug 

Here two cases are considered: the specific case where ability, O, has a mean, /U,(0), of zero and a 
variance, a^(0), of unity; and the general case where ability, 0*, has a mean, /x(©*), and a variance, cr^{0*), 
that may be prescribed by the practitioner for convenience in applications. 

Specific Case. In this case, the estimators of ability, O, depend on the realizations of the random binary 
variable U^ or the correctness or incorrectness of the answer to free-response item g. If the answer is correct, 
the estimator of ability is the mean of O for the subpopulation that would obtain a correct answer on free- 
response item g. If the answer is incorrect, the estimator of ability is the mean of O for the subpopulation that 
would obtain an incorrect answer on free-response item g. 

Specific Case: The Mean of 0 Given a Correct Answer to Item g, JJ.{0\ u^ = 1). This estimator of 
ability is a least squares estimator because this mean provides that value of O about which the sum of the squared 
discrepancies is minimized for the variable of ability given a correct answer to free-response item g. A convenient 
expression for this estimator of ability is provided by 

ix(e\u^=  \) = p(Z„0) /x(Z, I M, =  1) = p{Z^,0) 
4>iy,) (2.2.9) 

where p{Z^,6) is the correlation between the continuous variables Z^ and O. Notice that p{Z^,6) is known 
when flj,, the item parameter of discriminatory power, is known through 

P(Z,,0) 
(1 «?)■■" 

(2.2.10) 

=  I), the which represents the explicit solution for p{Z^,0) as derived from (2.1.12). In (2.2.9), piZ^ 
mean of Z^ given a correct answer to item g, is provided by (2.2.4); y^,, the point of dichotomization on the 
continuous variable Z^,, is yielded by (2.2.2); 0(y^,), the density in the standard normal distribution evaluated 
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at the point of dichotomization, y^, is given by (2.2.5); and P^, the unconditional probability of a correct answer 
to item g, is provided by (2.2.1). 

Example 2.2.7. In Example 2.1.1 it was found for item g as portrayed in Figure 2.1.1 
that the parameter of discriminatory power for this item, a^, was 2.0647. When (2.2.10) is evaluated 
given this value for a^, it is found that p{Z^,0) equals .90, which was the value obtained earlier 
in Example 2.1.1 through inspection of Figure 2.1.1. From Example 2.2.3, it is known that the 
mean of Z^ given a correct answer to item g, piZ^ \ u^ = 1), is .5963. Given these values for 
p(Z^, 0) and p{Zg \ Ug = 1), an evaluation of (2.2.9) yields .5367 as the value of the mean of 
O given a correct answer to this item g. The value .5367 represents the mean of the distribution 
portrayed in Figure 2.2.1. 

The distribution in this figure is easily constructed. The value of the ordinate in this distribution, 
f{d I Ug =  1), at a particular value of the abscissa, d, given a correct answer to item g. can be obtained from 

f(d\u^ = 1) = Pg(9) (/>(0) (2.2.11) 

for the range of values of 0 from negative to positive infinity. The ordinate is the product ofPg(ff), the probability 
of a correct answer to item g, as provided by (2.1.18), and 0(0), the density function for the assumed distribution 
of O when both of these terms have been evaluated at a particular value of O. The density function for the 
standard normal distribution, 0(0), is defined as 

0(0) = (27r)-5exp(-.5 0^). (2.2.12) 

When the values of the ordinate as obtained from (2.2.11) have been plotted with respect to the abscissa for the 
range of values of 0(M^, = 1) from —3.0 to +3.0, the curve delineating the distribution portrayed in Figure 
2.2.1 is the result. 

-3.0 0 +3.0 

Figure 2.2.1. The distribution of ability given u^ equal to one, 6{Ug =  1), or, identically, the distribution of 
0 resulting from incidental selection on 0 due to explicit selection on the continuous variable Z 
where 7^ is the cut score. 
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Both (2.2.11) and (2.2.12) provide values of the ordinate for a particular distribution. In the instance of 
(2.2.11) the distribution is that of ability given a correct answer to item g,f{6 \ u^ = 1); and, in the instance 
of (2.2.12), the distribution is that of ability, O, as originally assumed. While (2.2.12) is the density function 
for the distribution of 6, (2.2.11) is not the density function for the distribution of 0(u^ = 1). By definition, 
a density function provides values of the ordinate given the condition that the area under the curve is unity. The 
area under the curve described by (2.2.11) is known from integral calculus to be P^, the unconditional probability 
of a correct answer to item g. The density function for the distribution of 0{u^ = 1), </)(0 | M, = 1) can be 
obtained from (2.2.11) through 

4>(e\u,= 1) =fl^WzJl  "■■ ' (2.2.13) 

by dividing the outputs of (2.2.11) by the value of P^. 
It has been observed that y^, the point of dichotomization on the continuous variable Z^, is translated 

through (2.1.11) and (2.1.15) into the y^{B), the points of dichotomization on the standardized conditional 
distributions of Zg given 6, the Zg{d). Remember, this translation allowed the use of the cumulative normal 
distribution function, <P[*], of (2.1.18), to obtain Pg(6), the probability of a correct answer to item g given 6. 
Now if jg were actually a cut score on an observed continuous variable Z^, then the 7^(0) would be the 
corresponding cut scores on the standardized conditional distributions of Z^ given 0, the Zg{9). Under this 
interpretation, Pg{B), as obtained from (2.1.18), yields the probability of being selected given the continuous 
variable O. As a further consequence of this interpretation, the distribution portrayed in Figure 2.2.1 as generated 
from (2.2.11) would be the distribution of 0 resulting from incidental selection on the continuous variable 0 
due to explicit selection on the continuous variable Zg where the cut score is jg. 

Specific Case: The Mean of 0 Given an Incorrect Answer to Item g, |U(0 | Ug = 0). This estimator is 
a least squares estimator because this mean provides that value of 6 about which the sum of squared discrepancies 
is minimized for the variable of ability given an incorrect answer to free-response item g. A convenient expression 
for this least squares estimator is provided by 

M0 I Ug = 0) = p(Zg,0) ixiZg I Ug = 0) =  ~p(Zg.O) ^ . (2.2.14) 

In (2.2.14), p{Zg,0) is the correlation between the continuous variables Z^ and O which can be obtained from 
(2.2.10) when Og, the item parameter of discriminatory power, is known; ix{Zg \ Ug = 0) is the mean of Z, 
given an incorrect answer to item g as provided by (2.2.6); jg is the point of dichotomization on the continuous 
variable Zg as defined by (2.2.2); 4>(yg) is the density in the standard normal distribution evaluated at jg as 
given by (2.2.5); and Qg, the unconditional probability of an incorrect answer to item g is provided by (2.2.3). 

Example 2.2.8. In Example 2.2.7, it was found for item g as depicted in Figure 2.1.1 
that p(Zg,0), the correlation between the continuous variables Z^ and O, was .90; and in Example 
2.2.4, the value of - 1.0245 was obtained for p(Zg \ Ug = 0), the mean of Zg given an incorrect 
answer to item g. When these values are used in an evaluation of (2.2.14), it is found that the 
mean of 0 given an incorrect answer to this item g is - .9220. This value represents the mean 
of the distribution illustrated in Figure 2.2.2. 

The distribution in this figure is also easily constructed. The value of the ordinate in this distribution, 
f{d I Ug = 0), at a particular value of the abscissa, 6. given an incorrect answer to item g, can be obtained from 

f(0\ Ug = 0) = Qg{e)cb{0) (2.2.15) 

for the range of values of ©from negative to positive infinity. The ordinate is the product of Qg(d), the probability 
of an incorrect answer to item g, and 4){0), the density function for the assumed distribution of 0 when both of 
these terms have been evaluated at a particular value of 0. The probability of an incorrect answer to item g 
given 9, Qg{0), is provided by (2.1.20), and the density function for the standard normal distribution is defined 
by (2.2.12). When the values of the ordinate as obtained from (2.2.15) have been plotted with respect to the 
abscissa for the range of values of 0 from -3.0 to +3.0, the result is the curve delineating the distribution 
presented in Figure 2.2.2. 
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Oiug - 0) 

-3.0 0 +3.0 

Figure 2.2.2. The distribution of ability given Ug equal to zero, OUi^ = 0), or, identically, the distribution of 
0 resulting from incidental rejection on 6 due to explicit rejection on the continuous variable Zg 
where y^ is the cut score. 

When divided by the appropriate value, (2.2.15), as in the instance of (2.2.12), becomes the density 
function for the distribution of 0(Ug = 0) where the area under the curve is unity. As known through integral 
calculus, the appropriate value in this situation is Qg, the unconditional probability of an incorrect answer to 
item g. This density function, (j)(d \ Ug = 0), is provided by 

,     ,                    /(» I M. = 0) 
., .      cH0 \ Ug = 0) = ■'-^^ '-, (2.2.16) 

which yields the ordinate for the distribution of 6{Ug = 0) where the area under the curve is unity. 

Earlier it was noted that y^,, the point of dichotomization on the continuous variable Zg, is translated 
through (2.1.11) and (2.1.15) into the y^(9), the points of dichotomization on the standardized conditional 
distributions of Zg given d, the ZgiO). Now if jg is again considered as the cut score on an observed continuous 
variable Zg, then again the jgid) become the corresponding cut scores on the Zgid). Under this interpretation, 
Qg(0), as obtained from (2.1.20), yields the probability of being rejected given the continuous variable Zg-, and 
the distribution depicted in Figure 2.2.2 as generated from (2.2.15) would be the distribution of O resulting 
from incidental rejection on the continuous variable O due to explicit rejection on the continuous variable Z 
where the cut score is y,,. ■ - 

General Case. In the general case of least squares estimators of ability the practitioner prescribes the 
mean and variance of 0*, the continuous variable of ability. This prescription may be made in order to produce 
ability estimates yielding a given mean and variance. A certain mean and variance may be convenient in a 
particular application. How this prescription is made and how it is used is illustrated in Chapter 8. Under the 
illustrated practice, the mean of 0* and the mean of the estimates of 0* will, in expectation, be equal. However, 
the variance of 0* and the variance of the estimates of 0* will differ. This difference will be smaller when the 
ability estimates for all individuals are more precise, and larger when the ability estimates for all individuals are 
less precise. Thus one must hold the degree of precision fixed when solving for the variance of 0* that will 
yield the desired variance for the estimates of O*. In Chapter 8, the solution for the appropriate variance of 0* 
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given the desired variance for the estimates of O* is obtained by holding the degree of precision constant. In 
practice, this degree of precision is maintained through the effective use of termination rules as described in that 
chapter. 

The parameters a^, item discriminatory power, and b^, item difficulty, were defined by (2.1.12) and 
(2.1.13). These parameters apply in the specific case when the continuous variable of ability, 0, has a mean, 
/x(0), of zero and a variance, (J^{0), of unity. When, as in the general case, the continuous variable of ability, 
0*, has a mean, /^(0*), and a variance, o^(0*), prescribed by the practitioner, the parameters a^ of (2.1.12) 
and b^ of (2.1.13) no longer apply. These parameters need to be transformed to obtain the corresponding parameters 
a* and b* that are appropriate for the continuous variable 0*. 

In this general case, a|, item discriminatory power, is obtained from the transformation 

(2.2.17) 
o-(0*) ' 

and b*, item difficulty, is obtained from the transformation 

b* = b^,a(0*) + M0*). (2.2.18) 

after /x(0*) and o^(0*) have been prescribed by the practitioner. These transformations yield identical proba- 
bilities of a correct answer to itemg for each value of 0and its corresponding value of 0*. The item characteristic 
curve remains invariant given the transformation of the continuous variable 0 into the continuous variable O*. 

Notice that the transformations in (2.2.17) and (2.2.18) are reversible. The use of 

and 

= fl* (7(0*) (2.2.19) 

b* ~ jLt(0*) 

cr(0*) 
(2.2.20) 

will return the item parameters a^ and b^ that are appropriate for 0 when a*, b*, /u,(0*), and cr(0*) are 
known. 

When a* and b* are known, that is, after ju,(0*) and cr^(0*) have been prescribed, the correlation between 
the continuous variables Z^ and 0* is given by 

^   ^ a* oiO*) .      -    - 
p(Z.„0) = ^ -^—r-7 , (2.2.21) ^   * {1  + [a* o-(0*)]2}5 y^.^-^i) 

which is identically the correlation between the continuous variables Z^ and 0. The scale of ability has no effect 
on the correlation. When a* and b* are known, that is, after fiiO*) and cr~{0*) have been prescribed, the point 
of dichotomization on the continuous variable Z^, y^, is provided by 

^        b* - iJijO*) 
...       : ■       ^'      Ua*r^ + (T2(0*)]-5 ' (2.2.22) 

which is also invariant with respect to a change of scale in ability. 
In the general case the least squares estimators of ability are merely the means of 0* given the two possible 

outcomes: the mean of 0* given a correct answer to free-response item g, fiiO* \ u^ = 1); and the mean of 
0* given an incorrect answer to free-response item g, /LI(0* | U^ = 0). 

General Case: The Mean of 0* Given a Correct Answer to Item g, ix{0* \ u^ =  1). This least squares 
estimator of ability is conveniently provided by 

IxiO* \u^ =  I) = /X(0*) + p(Z^,9) o-(0*) ju,(Z, I u^ =1) 

(My ) 
= M0*) + p(Z.,0) or(0*) ^^ . (2.2.23) 

,? 

In (2.2.23), /A(0*) and cr(0*) are the prescribed mean and standard deviation of the continuous variable 0*; 
p(Zg,0) is the correlation between the continuous variables Z^ and 0* as provided by (2.2.21); p-iZ^ \ u^ = 1) 
is the mean of Z^ given a correct answer to item g as given by (2.2.4); jg is the point of dichotomization on 
the continuous variable Z^ as provided by (2.2.22); </>(y^) is the density evaluated at this point of dichotomization 
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as obtained from (2.2.5); and P^ is the unconditional probability of a correct answer to item g as provided by 
(2.2.1). The values for p{Z^,0), fx{Z^ \ u^ = 1), y^, 4>(yg), and P^ remain invariant under a linear transformation 
of scale on the continuous variable of ability. 

Example 2.2.9. In the illustration that will be provided in Chapter 8, it is deemed desirable 
to obtain ability estimates that will have a mean of 100 and a standard deviation of 20. If the 
precision of these estimates is constant for all individuals at the termination of testing and com- 
parable to that achieved with a test reliability, as will be defined and described in Chapter 7, of 
.90, then the mean, fxiO*), must be prescribed as 100 and the variance, a~(0*), must be prescribed 
as 444.4444. The standard deviation, aiO*), must then be 21.0819. 

In Example 2.1.1, it was found that a^ for item g as depicted in Figure 2.1.1 is 2.0647. 
When a* of (2.2.17) is evaluated given the values of 2.0647 for a^ and 21.0819 for o<0*), a* 
is found to be .09794. When piZ^, O) of (2.2.21) is evaluated with these values of a| and aiO*), 
p(Z^,0) is found to be .90 (the identical value that was obtained for p(Z^,,0) through the use of 
(2.2.10) in Example 2.2.7). Evaluating b* of (2.2.18) given the values — .375, as obtained from 
Example 2.1.1, for b^, 100 and 21.0819 as prescribed for p-{0*) and <y(0*), respectively, b* is 
found to be 92.0943. In obtaining y^ from (2.2.22) given the values of .09794 for a*, 92.0943 
for b*, 100 for piO*), and 444.4444 for cr^O*), y^ is found to be - .3375 (the identical value 
that was obtained for y^ through the use of (2.2.2) in Example 2.2.1). Since -y^, is — .3375, </>(y^) 
and P(, have already been determined. Given this value for y^, 4>(yg) was found to be .3769 in 
Example 2.2.3; and P^ was found to be .6321 in Example 2.2.1. Since (^(y^,) and P^ are both 
invariant under a linear transformation of the scale of the continuous variable of ability, 
pi(Z^ \ Ug = 1) as determined by (2.2.4) must also be. The mean of Z^ given a correct answer 
to item g, p-fkZ^ \ u^, = I), was found to be .5963 in Example 2.2.3. 

The least squares estimator of ability, p.{0* \ u^ = 1), can now be evaluated through the 
use of (2.2.23). In this situation for this item g, it is known that p(0*) is 100, piZg,0) is .90, 
ai0*) is 21.0819, and piiZ^ \ M,, = 1), 0(7,,) divided by Pg, is .5963. When p.{0* \ u^ = I) 
of (2.2.23) is evaluated given these values, p.(0* \ u^ = 1) is found to be 111.3140. The value 
111.3140 represents the mean of the distribution depicted in Figure 2.2.1 after a linear transfor- 
mation of 0 into 0*. This transformation can be effected pictorially by merely changing the 
values along the abscissa in Figure 2.2.1 from —3.0 to 36.7543, from 0 to 100, and from +3.0 
to 163.2457. With this transformation of the scale of ability, the distribution of 0* given u^ equal 
to one, 0*(Ug = 1), is analogous to the distribution of ability after incidental selection on 0* 
resulting from explicit selection on the continuous variable Zg where 7,, is the cut score on the 
continuous variable Zg. 

In the psychological literature on personnel selection, an early occurrence of a mathematical expression 
closely related to that in (2.2.23) was due to Brogden (1949). In this article, the continuous variable comparable 
to 0* is a criterion measure of productivity, Y, rendered in a dollar metric with a standard deviation, oiY); and 
the predictor of this criterion measure is a a continuous variable Z with a cut score y, and a selection ratio P. 
The validity coefficient, p(Z, Y), is the correlation between the predictor, Z, and the criterion measure, Y. Hence, 
the mean of Y given explicit selection on Z, p,(Y \ selection on Z), is 

IxiY I selection on Z) = p.(Y) + p(Z,Y) a(Y) ^^^^-^ , (2.2.24) 

which is merely (2.2.23) interpreted into the context of personnel selection. The output of (2.2.24) is also the 
dollar productivity per individual selected because of the nature of the criterion variable Y. The unconditional 
mean on the criterion variable, p.{Y), is identically the mean of the continuous variable Y or the dollar productivity 
per individual under random selection. Hence, the gain in dollar productivity per individual selected over the 
situation where selection is at random, Ap.{Y \ selection on Z), is given by 

AfiiY I selection on Z) = p{Z,Y) a{Y) ^^^^^ , (2.2.25) 

into which the cost of testing can be incorporated. The cost of testing is given by the cost per individual examinee, 
C (a constant), divided by P, the selection ratio. Thus, the gain in dollar productivity per individual selected 
adjusted for the cost of testing, Api{Y \ selection on Z, cost of testing) is 
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AfiiY I selection on Z, cost of testing) = p{Z,Y) a{Y) — , (2.2.26) 

because random selection does not entail a cost for testing. 
The utility of selection on the continuous variable Z adjusted for the cost of testing, {/(selection on Z, 

cost of testing), is defined as the gain in the dollar value of productivity adjusted for the cost of testing given 
those individuals selected on the continuous variable Z. This utility is expressed as the number of those individuals 
selected on the continuous variable Z, ^selection on Z), multiplied by the output of (2.2.26), the gain per 
individual in the dollar value of productivity adjusted for the cost of testing. The number of individuals selected 
on the continuous variable Z, A'(selection on Z), is obtained from 

A'(selection on Z) = PN, (2.2.27) 

where P is the selection ratio and A' is the total number of individuals tested. Thus, the expression 

{/(selection on Z, cost of testing) 
= A'(selection on Z) zl/j,(y | selection on Z, cost of testing)        (2.2.28) 

yields the gain in the dollar value of productivity adjusted for the cost of testing given those individuals selected 
on the predictor, the continuous variable Z, where y is the cut score and, thus, P is the selection ratio. 

General Case: The Mean of O* Given an Incorrect Answer to Item g, ix{0* \ u^ = 0). This least squares 
estimator of ability is conveniently provided by 

,  ,     /x(0* I u^ = 0) = fxie-*) + p(Z„.0) (7(0*) ix(Z^ I u^ = 0) 

= M©*) - p(Z^,e) (7(0*) ^^ . ■■  ■ (2.2.29) 

In (2.2.29), iJ.{0*) and aiO*) are the prescribed mean and standard deviation of the continuous variable 0*; 
p(Z^,6) is the correlation between the continuous variables Z^ and 0* as given by (2.2.21); /x(Z, | M, = 0) is 
the mean of Z^ given an incorrect answer to item g as provided by (2.2.6); y^ is the point of dichotomization 
on the continuous variable Z, as given by (2.2.22); ^(y,) is the density evaluated at this point of dichotomization 
as obtained from (2.2.5); and Q^ is the unconditional probability of an incorrect answer to item g as provided 
by (2.2.3). The values for p(Z^,0), p-iZ^ \ u^ = 0), y,, 0(y^,), and P^ remain invariant under a linear 
transformation of the scale of the continuous variable of ability. 

Example 2.2.10. As in the case of Example 2.2.9, it is viewed as desirable to obtain 
ability estimates that at the termination of testing will have a mean of 100 and a standard deviation 
of 20. These respective values can be obtained by terminating the tests for all individuals at a 
level of precision comparable to that achieved with a tailored test reliability of .90 and prescribing 
the mean of 0*, ^t(0*), as 100 and the variance of 0*, (T-(0*), as 444.4444 or the standard 
deviation of 0*, cr(0*), as 21.0819. 

In Example 2.2.9, p(Z^,0), y,, and (f)(y^) were found to be .90, -.3375, and .3769, 
respectively, for item g as depicted in Figure 2.1.1. Since y^, is invariant under a linear transfor- 
mation of scale of the continuous variable of ability, so must Q^ as determined by (2.2.3) be 
invariant. The unconditional probability of an incorrect answer to item g, Q^, was found to be 
.3679 in Example 2.2.2. The mean of Z^ given an incorrect answer to item g is also invariant 
under a linear transformation of scale of the continuous variable of ability. This invariance nec- 
essarily follows since <^(y^,) and Q^ in (2.2.6) are invariant under such a transformation. In Example 
2.2.4, p,(Z^ I Mj, = 0) was determined to be - 1.0245. 

The least squares estimator, p.(0* \ u^ = 0), can now be evaluated through the use of 
(2.2.29). For this situation and for this item g, it is known that p.(0*) is 100, p(Zg,0) is .90, 
aiO*) is 21.0819, and p,(Z^ \ u^ = 0), the negative of (^(y^,) divided by Q^, is - 1.0245. Wheii 
/x(0* I Ug = 0) of (2.2.29) is evaluated given these values, p.{0* \ u^' = 0) is found to be 
80.5614. The value 80.5614 represents the mean of the distribution depicted in Figure 2.2.2 after 
a transformation of 0 into 0*. This transformation can be effected pictorially by merely changing 
the values along the abscissa in Figure 2.2.2 from -3.0 to 36.7543, from 0 to 100, and from 
+ 3.0 to 163.2457. The distribution of 0* given an incorrect answer to item g, O^iu^ = 0), is 
analogous to the distribution of 0* after incidental rejection on 0* resulting from explicit rejection 
on the continuous variable Z^ where y is the cut score on the continuous variable Z,. 

18 



In tailored testing, the general case of ability estimation is the more interesting case. As will be seen in 
later chapters, this case allows the sequential updating of ability estimates as more items are added to a tailored 
test. The mean and variance of the distribution of ability change as each answer to a tailored test is scored; and 
it is the general case that produces estimators of ability under these changes. The specific case is only appropriate 

. for a tailored test consisting of a single item. This case cannot accomodate the changes in the mean and variance 
of the distribution of ability that occur with the sequential scoring of items in a tailored test. 

2.3. Mathematical Proofs 

The convenient expressions that are derived in this section were presented and numerically illustrated 
earlier in Section 2.2. The mathematical proofs for these expressions as contained in this section may be omitted 
by the reader who is seeking a general understanding. The omission of this section will not result in a loss of 
continuity. 

At this juncture, a brief review of the bivariate normal distribution is in order. A helpful background for 
this review can be found in Mood and Graybill (1963). It will be shown that the joint distribution of the continuous 
variables Z^ and 0 is bivariate normal. This relationship will be established from the fundamental assumptions 
of the basic model for a single common factor presented in Chapter 1. Bivariate normality facilitates the derivation 
of many useful mathematical forms. 

Bivariate Normal Distribution 

In the present instance, the joint density function for the bivariate normal distribution is given by 

(t>(^^,d) = (277)-' [l^p2(Z,,0)]--^exp   -.5 
1  - pHZ^.O) 

(2.3.1) 

where a density function is by definition a relative frequency. In the case of a joint density function, as in 
(2.3.1), its integral over the plane must be unity, 

(i){C,,e) dc, de = 1.      ■ (2.3.2) 

This equality may be proved by completing the square on [,^ in the exponent of (2.3.1), which yields 

<^«„0) 

= (277)-' [1 - p2(Z,,0)]- 5  exp(^y—^j^^-^|l4 - p(Z„0)0|2 + 11 - pHZ^,e)W\].    (2.3.3) 

After rearranging the exponent in (2.3.3), it is found that 

,   <t>{C,,e) = (277)-' [1 - p2(Z,,e)]--'^exp(-.5 li^' ~  vv^'fifsl   --5^') > (2-3.4) 

which when integrated over the plane may be represented as. 

£(277)-' [1 - p^(Z„e)]-^exp(-.5 lyfe^g^r -.5 e^) d^,de.     (2.3.5) 
p-iZ^^O)]^ 

It is to be noted that ^^,(0) of (2.1.10) can now be substituted into the exponent of (2.3.5). Further, since the 

derivative of ^^{0) with respect to ^j, is 

.     . _ ^ 4 - p(Z^,0)e 
■ X- d'ue)        [1 - p2(7 ,0)1^ , , 

;, ..   ~7^=    di,-        = n - pHz,,e)]-\ (2.3.6) 

it is known that the differential of ^^,(6) in relation to that of ^^, is 

:;.    ;.   . .., ^^(0) = ^^[1  - p2(Z„0)]-^ (2.3.7) 
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which can also be substituted into (2.3.5). These substitutions allow one to write the integral as 

j^ J_^ (277)- 5 exp{-.5 ['(,{em d^id) (27r)- -^ cxp{-.56') d0, ■  (2.3.8) 

which can be expressed as the product of two integrals .      .y  „ 

J_^ (27r)--^ exp{-.5 ['^,{6)]'} d'^O) J   ^ (277)-' exp(-.502) dO (2.3.9) 

because it is known that the innermost integral in (2.3.8) is a constant during integration with respect to 6. This 
integral, now on the left side of (2.3.9), is the cumulative normal distribution function of (2.1.18). In this case, 
it represents the entire area under the normal curve, which is known from previous discussion to be unity. The 
integral on the right side of (2.3.9) is also a cumulative normal distribution function, in this case, that for the 
continuous variable O. Because Q is assumed to be normally distributed with a mean of zero and a variance of 
unity, this integral is also known to be unity. Because the product of the integrals is unity, (2.3.2) has been 
proved. 

The density of the unconditional or marginal distribution of O is by definition 

'      '^^^^ " \_^4>(C,>^)dC,, ■■ (2.3.10) 

where a substitution from (2.3.4) yields 

^(0) = /_(277)-'[l-pU>0)r'exp(-.5|^^^^||^|   -.50^)^4.       (2.3.11) 

Again it is noted that ^^{6) of (2.1.10) can be substituted for the expression in braces in the exponent. To obtain 

the integral with respect to ^^{6), a substitution from (2.3.7) is also necessary. These substitutions lead to 

^{d) = (277)--5 exp(-.502) J^^ (277)-5 exp{-.5 [l,{e)Y) d^d), (2.3.12) 

where it is known from previous discussion that the value of the integral is unity because the integral represents 
the cumulative normal distribution function for the total area under a normal curve. Thus the marginal density 
of ©is 

(i>(e) = (277)--5exp(-.502), (2.3.13) 

or merely the density of the univariate normal distribution. ^ 
Notice that (2.3.4) after a substitution from (2.1.10) may be written as . 

(j>(C,,e) = [1 - p2(Z,,0)]- 5 (277)- 5 exp{-.5[4(0)]2} (277)- -' exp(-.5e2), (2.3.14) 

the triple product of a scalar and two univariate normal densities. This scalar maintains a probability volume of 
unity under the normal bivariate surface when the conditional distributions decrease in effective range about 
either line of regression as the correlation, p(Z^,0), transits in values from zero to unity. One of the densities, 
as can be seen from (1.1.3) and (1.1.6), represents the normal probability density for the homoscedastic error 
variable A^ while the other represents the univariate normal density for the continuous variable 0. Notice that 
Cg(0) of (2.1.10) is merely A^ converted to a variance of unity. The means of the A^ are already zero, as can 
be seen in (1.1.9). The fundamental assumptions of the model for a single common factor characterize the joint 
distribution of each Z^ and 0 as bivariate normal. If the regression of one random variable on another random 
variable is linear, and the marginal distribution of that random variable is defined as univariate normal, and the 
conditional distributions for fixed values of that variable are homoscedastic and univariate normal, then the joint 
distribution is necessarily bivariate normal. This relationship also means that the other marginal distribution is 
univariate normal and that the other conditional distributions for fixed values of the other marginal random 
variable are also homoscedastic and univariate normal. 

The standardized distributions of Z^ given 0, the Z^(d), have been discussed in considerable detail with 
respect to their relationship to the item characteristic curve of the two-parameter normal ogive submodel. 
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Illustrations were provided in Figures 2.1.1 and 2.1.2. The exposition will now turn to the conditional distributions 
of 6 for fixed values of Z^ and the unconditional or marginal distribution of Z^. This exposition will require 
some detail because of the special relationship between Z^ and the binary variable U,. 

Discussion is facilitated by completing the square on 0 in the exponent of (2.3.1). This operation yields 

= (277)-' [1 - p2(Z,,0)J- -^ ^"P(l - 'pHZ^O) [f^ ^ P^^^'^^ ^'•''' + f' " P"^^-^'^^^ ^^)-    ^2.3.15) 

Equation (2.3.15) may be rearranged in the exponent as 

c^«„0) = (277)-' [1  - p^(Z„e)]--^exp(-.5 IJ : p2f;%p.}    --5 (^), (2.3.16) 

which when integrated over the plane may be represented as 

e - p(Z^,0) c, 
(277)-5 [I -p^(Z„e)]--^exp(-.5^^^ - p^zm'"^   Me(277)--5exp(-.5 0^f, 

(2.3.17) 

Let OiL) be defined as 

- 0-p(Z,,0)^, 
^^^^■^-[1 -p^(Z„0)P' ^2.3.18) 

where the similarity between 1^(6) of (2.1.10) and 0(Q of (2.3.18) is apparent. Both expressions represent 
standardized scores from normal conditional distributions. In the case of (2.3.18), the conditional distributions 
are those of O given (^. It may be noted that the derivative of §((^,) with respect to Q is 

e - p(Z„e) i,_ 

p2(Z,,0)]-'. (2.3.19) 
dd{L) [1 - p2(Z„0)]5 

dd de 

Therefore, the differential of 0([,^) in relation to that of 0 is given by 

ddiC,) = de [\ - pHZ^,e)r K (2.3.20) 

Substitutions from (2.3.18) and (2.3.20) into (2.3.17) now allow one to write 

J_^ (277)- = exp{-.5[0((,)]2} je(^^,) J_^ (277)-'exp(-.5 Cj) d^,, (2.3.21) 

the product of two integrals both known to have a value of unity. Thus, the integral over the plane or the 
probability volume under the bivariate surface as given in (2.3.2) can also be verified as unity from this perspective. 

The density of the unconditional or marginal distribution of Z is by definition 

cj>(c,) = \^^<i)(C,,e)de, (2.3.22) 

where a substitution from (2.3.16) permits one to write 

^^Q = L (2-)"' n - P^(Z,,e)]--^exp(-.5{^^_^^,^£^^^<-,|   ^.5 Cl) de.      (2.3.23) 

Substitutions from (2.3.18) and (2.3.20) into (2.3.23) lead to 

</.(4) = (27r)--5exp(-.5 ^2) [      (ITT)--^ tx^{-.5[e(Q]-} dhiQ, (2.3.24) 
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where the value of the integral is unity. As a result, it is found that 

(1>(Q = (277)-'^exp(-.5(2), (2.3.25) 

indicating that the unconditional or marginal density of the continuous variable Z^ is merely the density of the 
univariate normal distribution. 

Given the developments from (2.3.3) to (2.3.9) and from (2.3.15) to (2.3.21), it is apparent that the 
bivariate normal distribution can be portrayed as comprised of infinitely many conditional distributions of Zg 
given the random variable 0 as well as comprised of infinitely many conditional distributions of O given the 
random variable Z^. The former portrayal was presented in abbreviated fashion in Figure 2.1.1, while the latter 
is presented in an analogous fashion in Figure 2.3.1. In this figure, it is important to point out that the horizontal 
projection of the point of dichotomization, y^, across the bivariate normal distribution runs parallel to the 
conditional distributions of 0 given ^^,. Hence, these distributions and thus their means and variances are 
undisturbed by the binary scoring of item g based on Z^. As will later be seen, the means and variances of 0 
given ^^ are left undisturbed by another method of binary scoring for a multiple-choice item g that is determined 
by Z^. These relationships will become important when selection theory is considered in Chapter 5. These 
relationships can be sharply contrasted with those presented in Figure 2.1.1 where the bisection of the Z^id) 
based on the binary scoring of item g, the dichotomization of Z^, gives rise to the item characteristic curve of 
Figure 2.1.2. 

In Figures 2.1.1 and 2.3.1, the bivariate normal distribution is represented as consisting of conditional 
distributions with unit area that are homoscedastic and univariate normal. Though accurate, this representation 
is not the typical representation. The typical representation is displayed in Figure 2.3.2. In this figure, the bivariate 
normal distribution is represented by a configuration of ellipses, each arising from the display of points of equal 
joint density. This representation more closely resembles the sample counterpart of the bivariate normal distri- 
bution, the bivariate normal scatterplot. The apparent dissimilarity between Figure 2.3.2 and Figures 2.1.1 and 
2.3.1 is easily resolved. The relative frequency within each conditional distribution is given by the univariate 
normal density function for the fixed value of the marginal variable. This relationship is made explicit in (2.3.12) 
for 9 and in (2.3.24) for l^. Thus, one may choose to take into account the relative frequencies or marginal 

C/. 

u   — 1 (Shaded Area) 

w  =0 (Unshaded Area) 

Figure 2.3.1  Hypothetical relations among the item continuum Z^,, the free-response, binary item V^ 
conditional distributions of 0 given ^^,, and the latent trait 0. 

the 
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densities. In this type of representation, one arrives at the typical portrayal presented in Figure 2.3.2. The manner 
of portrayal of the bivariate normal distribution is thus optional. The choice of a particular manner depends then 
on the relationships that are to be explained. 

In the discussion that follows, convenient expressions are derived for various terms. These derivations 
will begin with the defining relationships within the bivariate normal distribution. During this initial stage of 
derivation, the reader may find Figure 2.3.2 helpful in visualizing the particular defining relationship that serves 
as a basis for the derivation. 

The Unconditional Probabilities for the Realizations of L/g 

The binary random variable U^ can realize one of two possible values, either one or zero, indicating a 
correct or an incorrect answer, respectively, to free-response item f>. Expressions will now be derived for the 
probabilities of these two possible outcomes. 

The Probability of A Correct Answer to Item g, Pr{u^ = 1). This unconditional probability is more 
commonly referred to as the p-value for item g; however, in this context it shall be designated as P,. By definition 
it is known that 

P, = Pr(H, =  1) = Pr(Z, ^ y^) 4>(C,,o) cie dc,. (2.3.26) 

where the rightmost term is the integral over the plane from y^ to positive infinity on Z^ and from negative 
infinity to positive infinity on 0. It should be noted that y^, because of (2.1.13), can be conveniently expressed 
as 

y, = p(Z,„e)/.,, 

where p(Z^,0), because of (2.1.12), can be conveniently expressed as 

(2.3.27) 

p{Z,,0) 
(1 + a^y 

(2.3.28) 

U 

II   = 1 (Shaded Area 

II   =0 (Unshaded Area 

Figure 2.3.2 A typical display of the bivariate normal distribution (including the univariate normal marginal 
distributions of Z^ and O). 
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After a substitution from (2.3.16) into the rightmost term in (2.3.26), the integral in (2.3.26) can be 
expressed as 

P,   = /^ (27r)- = exp(-.50^^J„J27r)-'[l-p2(Z,,e)]--^exp(-.5|^y^^^^^ 

(2.3.29) 

where substitutions from (2.3.18) and (2.3.20) yield 

P, = j   (277)--5 exp(-.5^2) ^^^ J^^ (2^)-.5 exp{-.5[0(4)]2} de(Q- (2.3.30) 

Again, it is to be noted that the rightmost integral in (2.3.30) is unity, which allows the writing of 

P, = I   (277)-^exp(-.5^)c/4 = J_N277)--5exp(-.5^)^4 = 0(-y,), (2.3.31) 

where <P (*) is by definition the cumulative normal distribution function. The equality of integrals in (2.3.31) 
is due, again, to the symmetry of the normal distribution. The probability of a correct answer to item g, P^, is 
pictorially represented by the shaded area in the marginal distribution of Z^, in Figure 2.1.1. This representation 
is possible because the truncated marginal distribution, as can be seen in the developments from (2.3.29) to 
(2.3.31), merely summarizes the truncated joint distribution for Zg. 

The Probability of An Incorrect Answer to hem g,Vr{Uf, = 0). As will become evident, this unconditional 
probability is the complement of P^ or (1 - P^), because the area under the normal curve is unity. Let this 
probability be designated as Q^. By definition then, it is known that 

e, = Pr(«, = 0) = Pr(Z,<7,) = J'*^ J^^ 4>{i,,e) d6 dC„ (2.3.32) 

where the rightmost term is the integral over the plane from negative infinity to y^ on Zg and from negative 
infinity to positive infinity on O. After a substitution from (2.3.16) into the rightmost term in (2.3.32), this 
integral can be expressed as 

e, = J'j27r)-^exp(-.5f^)rf4/_^^(2,r)--^[l-p^(Z„0)]--^exp(-.5|^^-^^|^ j' dd, 

(2.3.33) 

where substitutions from (2.3.18) and (2.3.20) provide 

Qg = £'^ (277)--^ exp(-.5^2) ^^^ J^^ (27,)-.5 exp{-.5[e(g]2} d~e{Q. (2.3.34) 

Again, it is to be noted that the rightmost integral is unity, which allows the writing of 

e, = |\277)-5exp(-.5^)rf4 = $(y,), (2.3.35) 

where €>{*) is again the cumulative normal distribution function. 

It is now apparent from a review of (2.3.31) and (2.3.35) that P^ and Q^, are complementary terms. These 
terms account for the entire area in the normal distribution where this area is unity. The probability of an incorrect 
answer to item g, Q^, is portrayed in Figure 2.1.1 as the unshaded area in the marginal distribution of Z^,. This 
representation is possible because, as can be seen in the developments from (2.3.33) to (2.3.35), the truncated 
marginal distribution merely summarizes the truncated joint distribution for Z^,. 

The Conditional IVIeans of Zg Given the Realizations of Ug 

The mean of Z^, can assume only one of two possible values depending on whether item g was answered 
correctly or incorrectly. Expressions will now be derived for these means or expected values for the two possible 
outcomes. 
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The Mean of Z^ Given a Correct Answer to Item g, ix{Z^ \ u^ =  1). This mean is defined by 

M(Z, I u^ = 1) = %{Z^ I „^ = 1) = J    J^^ ^^ ct>*{C,,9) dddC,, (2.3.36) 

where <t>*{Cf,,d) is the joint density function for this particular double integral. This joint density function is 
given by 

<f>*ii,,ff) = —^—, (2.3.37) 
;; 

where it is necessary to show that the probability integral 
C'x    roc 

j^ j^m„Q)dedi^ . (2.3.38) 

equals unity in order to verify that (2.3.37) is the joint density function. Since the reciprocal of P^, is a constant 
with respect to the integration of (2.3.38), a substitution from (2.3.37) into (2.3.38) yields 

ct>ii^,e) dd d^^, , (2.3.39) 

which may be seen to equal unity because of (2.3.26). The substitution of (2.3.37) into (2.3.36) leads to 

M(4 I «. =  1) = M    1      C, 4>i{,,0) de dC,, (2.3.40) 

which follows from the defining relationship stated in (2.3.36). After substituting from (2.3.16) into (2.3.40) 
and proceeding with the integration, one may write 

^(-z;. I«, = 1) 

.^  .-.      ,     ,„•,>.„   f   ,.  ,^...      ,„   __   ,       /       r  0-n(Z ff\r   l2\ 
de 

(2.3.41) 

= ^/^4(2vr)-.^exp(-.5^^).<J_J2.)--=[.-p^(Z,.0)]--3exp(-.5{^f^^|^ 

where substitutions from (2.3.18) and (2.3.20) provide 

M(2, I «, =  1) = ^ J    ^, (277)-' exp(-.5^2) ^^^ r     (277)-5 exp{-.5[0(^^,)]2} de{L).     (2.3.42) 

Again, it is to be noted that the rightmost integral in (2.3.42) is unity, which allows one to write, merely, 

M(4 \u^=  I) = ~      (,,(277)- ' exp(-.5(2) d^^, (2.3.43) 

where the antiderivative of the integrand, which is required in subsequent development, is known to be 

-</>((,)=- (277)-5exp(-.5(2). (2.3.44) 

That (2.3.44) provides the antiderivative of the integrand in (2.3.43) can be verified. One can take the derivative 
of (2.3.44) with respect to the variable of integration. This derivative must then equal the integrand. By way of 
verification, the derivative of (2.3.44) with respect to the variable of integration is found to be 

d[^4>iQ] _ ^[-(277)--'exp(-.5(^)] ^^   ^    ,rfexp(-.5(2) 
^r ~ 7T —  ~    ~   (277)    ^  '^ 
^4 ^C. di, 

=  - (2Trr^cxp(-.5^)^-^~^ = ^^(2^)-5e,p(_.5^2)^ (2345) 

where the rightmost equality is indeed the integrand in (2.3.43). 
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A solution for an integral usually consists of evaluating the antiderivative of the integrand at the upper 
and lower limits of integration and obtaining the simple difference. But the upper limit in (2.3.43) is positively 
infinite. Thus, the limit of the integral must be evaluated as b, the upper limit, approaches infinity: 

I    ^^, (277)-^^exp(-.5^2)^^^ ^   lini   I    ^^(2TTr'exp(-.5Qd^^  =   lim   [-<l)(b) +(j>{y^)].     (2.3.46) 

Because the antiderivative at b, — 4>{b), approaches zero as b becomes positively infinite, it is known that 

I    C>-i277)-'exp(-.5e,)d£, = My,), ■■ (2.3.47) 

where a substitution from (2.3.47) into (2.3.43) provides the desired result 

<A(Y„) 
M(4 I ". = 1) = ^^ •      ■ •      ■      , (2-3.48) 

'g 

Thus, the mean of Zg given a correct answer to item g, JLI(Z^ I «« = 0, is simply the value of the density at y^ 
in the standard normal distribution, <i>(y^,), divided by the unconditional probability of a correct answer to item 

The Mean of Z^ Given an Incorrect Answer to Item g, fiiZ^ \ ii^ = 0). This mean is defined by 

'    ■ iJi (Z, I M, = 0) = %(Zg I M, = 0) = J'''J   ^ C, 4>'iC,,0) dddC,,        ' (2.3.49) 

where 4>'iX^,6) is the joint density function for this particular double integral. This joint density function is given 
by 

(f>'(i,,e) = ^^^^^, ■ ;    „    .        (2.3.50) 

where it is necessary to show that the double integral 

ct)'(Cg,0)ddd(^ (2.3.51) 

equals unity in order to verify that (2.3.50) provides the joint density function. Since the reciprocal of Q^ is a 
constant with respect to the integration of (2.3.51), a substitution from (2.3.50) into (2.3.51) provides 

^Jlj_^<^(^s'^)^^^f«' (2.3.52) 

which may be seen to equal unity because of (2.3.32). The substitution of (2.3.50) into (2.3.49) leads to     /-'" 

fjL(Zg I „^ = 0) = ^     ' ^, 4>(Cg,e) dddC,. ' (2.3.53) 

After substituting from (2.3.16) into (2.3.53) and continuing with the integration, one may write 

^i{Zg I «^ = 0) ,~. ,     ;     -    -.._ -■■    _    ■   .    - :.    '   K    ; ■->■  - '    -:■    ■ ' 

= ^ f'^ C, (2.)--^ cxp(-.5Cl) dC, 11 (27r)"-^ [l-p^(Z„e)]- -^ ^^p( "'^ [1-p^^(Z;,0)^?4O ^^' 

(2.3.54) 
where substitutions from (2.3.18) and (2.3.20) provide 

tx(Zg\u^ = Q) = -^\      Cg{27rr''txp{-.S^l)dcA     (27r)--^exp{-.5[0(^,)]2}^0(g.     (2.3.55) 

Again it is to be noted that the rightmost integral is unity, which allows one to write 

;Lt(Z, \ u^ = 0) = -^ I '  ^^ (2TT)-' exp(-.5q) d^^, (2.3.56) 
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where the antiderivative of the integrand in (2.3.56) is given in (2.3.44) and verified as such in (2.3.45). A 
solution for an integral usually consists of evaluating the antiderivative at the upper and lower limits of integration 
and obtaining the simple difference. But the lower limit is negatively infinite. Thus, the limit of the integral 
must be evaluated as a, the lower limit, approaches negative infinity: 

'  4 (277)--^ exp(- .5^2)^^   =     Ij^     p ^ (277)- -^ exp(- .5^2) ^^ 
"----'" * (2.3.57) 

=     lim    [-</)(y,) + (Ha)]. 

Because the antiderivative at a,-^{a), approaches zero as a becomes negatively infinite, it is known that 

'  C, (277) --^ exp(- .5^^) ^^^ =  _ ^(^^) (2.3.58) 

where a substitution from (2.3.58) into (2.3.56) provides the desired result 

(i>{y ) 
/x(Zj «, = 0) =  - ^ .     •. (2.3.59) 

Thus, the mean of Z^ given an incorrect answer to item g, ^xiZ^ \ u^ = 0). is simply the negative of the value 
of the density at y^ in the standard normal distribution, - (^(y^), divided by the unconditional probability of an 
incorrect answer to item g, Q^.        , ,■ 

The Conditional Variances of Zg Given tine Realizations of Ug , 

The variance of Z^ can assume only one of two possible values depending on whether the item was 
answered correctly or incorrectly. Expressions will now be derived for these variances given the two possible 
outcomes. 

The Variance of Z^ Given a Correct Answer to Item g, cr^(Z^ \ u^ = 1). In solving for the variance of 
Z^ given a correct answer to item g, an expression is found for "g(Z^ | u^ = 1). This quantity represents the 
expected value of the sum of squared deviations from a mean that was appropriate before the truncation of Z 
at y^. Later, an expression is obtained for the desired variance, cr^iZ^ \ u^ = 1) or the expected value of the 
sum of the squared deviations about the mean subsequent to this truncation, through 

a^Z^ I «, =  1) = foiZ^ I u^ =  I) - fj^HZ^ I u^ =  1), (2.3.60) 

which is an explicit solution for a'(Z^, I M^, =  1) given the identity 

%{Z; \u,, =  1) = aHZ^ \u^ =  I) + i^^Z^ j «, =  1). (2.3.61) 

Proceeding with the solution for '^(Zj | M^ =  1), it is known by definition that 

'■ ^(Z^|M, = 1) = J^ J_(2^*((,„0)J0./4, (2.3.62) 

where 4>*([,f.,B) is given in (2.3.37) and verified as the joint density function in the discussion surrounding 
(2.3.39). A substitution from (2.3.37) into (2.3.62) allows one to write 

%(Zl I M, =  I) = ^ J^ J_.^ ll 4>(C,,0) dB dC,. (2.3.63) 

After substituting from (2.3.16) into (2.3,63) and continuing with the integration, one may write 

'MZl\u, =  1) 

^/^ ^^277) ' .^ exp(-.5^,?) .<J\277)-Ml-r(Z,,,.)]--^ exp(-.5[^^^^ 
2 

' dO 

..-,   ■ (2.3.64) 
where substitutions from (2.3.18) and (2.3.20) provide 

27 



%(.2}^\ u^=  \) = -\    ^J(27,)-Sexp(-.5^^)^^-^ (27r)--^exp{-.5[0(gi^} J0(4).     (2.3.65) 

Again, it is to be noted that the rightmost integral in (2.3.65) is unity, which allows the writing of 

%(Zl\u^= \) = -\    ClaTT)-'ty.^(-.5C\)d^,, (2.3.66) 
P^h^   ■ 

where it is customary to solve for this integral through the method of integration by parts. One begins by defining 
r and .r as 

■^    '   r = 4      ■ (2.3.67) 

and 
j =-<&((,)=- (277)-5 exp(-.5 (;?). ' (2.3.68) 

Notice that the derivative of r with respect to ^^, is unity: 

dr       dL 
77 =n   = ^- ^2.3.69) 

Thus the differential of r in relation to that of ^^, is given by 

dr = dC,. (2.3.70) 

Note further that the derivative of .v with respect to ^^, was previously given by (2.3.45). After a substitution 
from (2.3.68) into (2.3.45), it is known that 

^ = ^,, (277)--^exp(-.5^2) - (2.3.71) 

Therefore, the differential of s with respect to that of [,^ is provided by 

ds = C.^-TV tx'pi-.S Cl)dC,. ■ (2.3.72) 

Continuing with integration by parts, the simple differential of a product is used: 

d(r s) = r ds + s dr. (2.3.73) 

Transposing (2.3.73), it is found that 

r ds = d{r s) - s dr (2.3.74) 

where substitutions from (2.3.67), (2.3.68), (2.3.70) and (2.3.72) into (2.3.74) are now possible. These sub- 
stitutions result in 

d (277)- -^ exp(-.5 (2) dC, = d\-C,(2TT)--' exp(-.5 Q)] + (277)" ' exp(-.5 Q) dC,.     (2.3.75) 

Upon integrating (2.3.75), it is known that 

I    42(27,)-.5exp(-.5 Ci)dC,        ■ 

=   I    t/[-^,,(277)-5exp(-,5 ^?)] +        (277)--^exp(-.5 ^)^^,,     (2.3.76) 

where the first integral on the right side of the equality requires further attention. Because of (2.3.68), it is 
known that ' 

I    ^[- y277)-5exp(-.5^J)] =   I    d[- C,4>{Q\- (2.3.77) 

Since the integrand in (2.3.77) is unity, the antiderivative is merely the variable of integration, — ^^(j){[,^). A 
solution for this integral is obtained by evaluating the limit of the integral as the upper limit of integration, b, 
approaches positive infinity. It is known, therefore, that 
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I    4-4(277)-5exp(-.5^2)] =   li^   I   d[- C,(t>{Q] =   lim   [-b <t){b) + y^ cP{y^)],     (2.3.78) 

where the antiderivative evaluated at b, —h <j){b), approaches zero as b becomes positively infinite. It is then 
found that 

d[- ^,(277)-5 exp(-.5 CD = y, 4>{y^). (2.3.79) 

Substitutions from (2.3.79) and (2.3.31) into (2.3.76) allow one to write 
roc 

Cj (277)--^ exp( - .5 ij) d I, = y, (i>(y,) + P, (2.3.80) 

which can now be substituted into (2.3.66) providing 

• ^ (2^ I M, = 1) = 1 + ^>^s-^ . '   (2.3.81) 

Substitutions from (2.3.81) and from the squared result of (2.3.48) into (2.3.60), along with some rearrangement, 
now yield the desired result ,. 

P.,   \ P., 
a^(Zj«,= l)=l-^(^-yJ (2.3.82) 

» 

as a convenient expression for the variance of Z^ given a correct answer to item g. 
The Variance of Z^ Given an Incorrect Answer to Item g, cr(Z^ \ u^ = 0). In solving for the variance 

of Z^ given an incorrect answer to item g, an expression is found for "8(2^ | u^ = 0). This quantity represents 
the expected value for the sum of squared deviations from the mean that was appropriate before the truncation 
of Z^ at y^. Later, an expression is obtained for the desired variance or the sum of squared deviations about the 
mean subsequent to this truncation, cP-{Z^ \ u^ = 0), through 

o^ (Z,, I u^ = 0) = %(Z^g I tt, = 0) - iJ?(Z^ I «, = 0), (2.3.83) 

which is an explicit solution for cr^iZ^ \ u^ = 0) given the identity 

%{Zl I M, = 0) = cr(Z^ I M, = 0) + ^l}(Z^ I u^ = 0). (2.3.84) 

Proceeding with the solution for ^(Z^ | «, = 0), it is known by definition that 

%(Zl I «, = 0) =  \      I     Cl 4>\C,,e) dOdC,, ■ (2.3.85) 
— oc 

where <j)^iCg,6) is provided in (2.3.50) and verified as the joint density function in the discussion surrounding 
(2.3.52). A substitution from (2.3.50) into (2.3.85) allows one to write 

^(Z^ I M^ = 0) = ^ JJ' J_^ Cj <P((g,0) dO dC,. (2.3.86) 

After substituting from (2.3.16) into (2.3.86) and continuing with the integration, one may write 

«(^ I ", = 0) 

\''ljl{27r)-'t^^(-.5C'')dCg\_ 

(2.3.87) 

"g I "g 

- J_ Cl (2rrr^ exp(- .5^2) d^, j_ {l^y-^ [1 - p\Z„Q)r ' exp(^- "^([i  - p^(Z,,0)]-^'   ) '^^' 

where substitutions from (2.3.18) and (2.3.20) provide 

1 

e, 
y 

%{Zl I „^ = 0) = — I      Cl (277)--5 exp(-.5 Cj) dC,        (277)- = exp{-.5 [e{QV} d6(Q.     (2.3.88) 
„   — oc 

s 
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Again, it is to be noted that the rightmost integral is unity, which allows one to write 

{r- I „^ = 0) = - I [ C; (277j- 5 exp(- .5 (2) dC,, (2.3.89) 

where it is customary to solve this integral through the method of integration by parts. Again, the definitions 
provided in (2.3.67) and (2.3.68) along with their consequences as given in (2.3.70) and (2.3.72) are used. 
Continuing with integration by parts, the simple differential of a product is again used as in (2.3.73) and (2.3.74), 
where substitution from (2.3.67), (2.3.68), (2.3.70), and (2.3.72) into (2.3.74) again yields (2.3.75). Upon 
integrating (2.3.75) between the different limits, one now obtains 

= J_'^ d[-C, (277)- 5 exp(-.5 Q)] + y^ (277)- 5 exp(-.5 Cj) dC,,     (2.3.90) 

where the first integral on the right side of the equality again requires further attention. Because of (2.3.68), it 
is known that 

J '^ d{-i^ ilTT)--' exp(-.5 Cl)] = J_'^^ d[-C^ <i>{Q]. (2.3.91) 

Since the integrand in (2.3.91) is unity, the antiderivative is merely the variable of integration, - Cg 4>{C )• A 
solution for the integral in (2.3.91) is obtained by evaluating the limit of the integral as the lower limit of 
integration, a, approaches negative infinity. One therefore has 

/ 
4-^, (277)--5exp(-.5 (2)] ^      jjj^     \^'d[-Cg <i){Q]      ' 

=     lim    l~y,(})(y^) + a(t>(a)], (2.3.92) 

2 

where the antiderivative evaluated at a, -a (f)(a), approaches zero as a becomes negatively infinite. The solution 
for this integral, then, is        , . 

^^d[-i^(2TTr'cxp{~.5eg)] =  ' Jgcpiyg). (2.3.93) 

Substitutions from (2.3.93) and (2.3.35) into (2.3.90) allow one to write 

^g (27rj- 5 exp(-.5 (?) rf^ =   - y^ </>(y^) + Q^, (2.3.94) 

which can now be substituted into (2.3.89), yielding 

«(4I«, = 0) =  1  -^:^^.        ^ (2.3.95) 

Substitutions from (2.3.95) and from the squared result of (2.3.59) into (2.3.83), along with some rearrangement, 
now yield the desired result 

^t7   \ r^^ i ^^^S^ a^iZ^ I M, = 0) =  1  - -^ 
<t>(yg) 
 + y.. (2.3.96) 

as a convenient expression for the variance of Z^ given an incorrect answer to item g. 
The expressions for the variances provided in (2.3.82) and (2.3.96) will have further use in later derivations 

in Chapter 5. Specifically, these equations will provide input for the derivations of the restricted variances of 
ability given the realizations of the binary variable Ug. 

The Least Squares Estimators of Ability Given the Realizations of Ug 

Since the mean is the point about which the sum of squared discrepancies is minimized, least squares 
estimators of ability for the possible realizations of the binary variable U^ are readily obtained. 
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Specific Case. For the specific case where O has a mean of zero and a variance of unity these estimators 
are merely the means of O given the two possible outcomes: the mean of O given a correct answer to item g, 
IJL(0 I u^ = 1), and the mean of O given an incorrect answer to item g, /a(0 | u^ = 0). These least squares 
estimators of ability will now be derived for the specific case. 

Specific Case: The Mean of 0 Given a Correct Answer to Item g, yu(0 | u^ = 1). In order to obtain a 
convenient expression for the mean of 0 given a correct answer to item g, p,{0 | u^ = 1), it is necessary to 
evaluate the defining relationship 

ix(0 I M, =  1) = %(0 \u^=  \) = - \    )      e ci)(C,,e) dBdC,.      ■ (2.3.98) 

ix(e I II, =  1) = %(0 I «^ =  1) = J    J_^ 6^ 0*(^^,,0) dddC^, (2.3.97) 

where 4>*{^^,9) is given in (2.3.37) and verified as the joint density function in the discussion surrounding 
(2.3.39). A substitution from (2.3.37) into (2.3.97) allows one to write 

After a substitution from (2.3.16) into (2.3.98), one may write 

M(0| M., =  1) = 15(0 1 Ug =  1) 

= ^J,J-.'^(27.)-Ml  - p^(Z„0)]--^exp(^-.5|^^ _ p.(^^^^Q^j.| j d0(2^r-cm~.5 g) .Z^, 

(2.3.99) 

where substitutions from (2.3.18) and (2.3.20) provide ,   -   . 

M0| M,, =  1) = %{0\ Ug =1) ■■ 

1; =v\    I     0 (27T)-' exp{-.5[e (Qf} dd{Q (ITT)-' cxpi-.5 f-) dig. 

>      - - ■• .. , (2.3.100) 

The innermost integral in (2.3.100) is merely the expected value of 0 given (,, %{0 \ ^^,), which can be 
represented in Figure 2.3.1 as the value of the coordinate of 0 for a point on the line of regression of 0 onto 
ig labelled %i0 \ i,). where the coordinate of Z^ is the particular fixed value ^j,. The value that this integral 
assumes is merely the product p{Zg,0) (,, as will soon become evident. Proceeding with an evaluation of this 
innermost integral, one solves (2.3.18) explicitly for 0 where this solution is 

e = l\ - p2(Z^,0)]-5 e{Q + p(Z,,0) Cg- ■   - (2.3.101) 

After a substitution of (2.3.101) into the innermost integral in (2.3.100), one can write 

J_^ e (277)- -' exp{- .5 WQf-} d0{Q 

ill - pHZg,0)]' 0{Q + p(Z^,0) Q (277)-'^ exp{-.5 [0{Cg)Y} d9{Q. 

(2.3.102) 

The integral on the right side of (2.3.102) can be expressed as a sum of two integrals 

j_^0(27rr'exp{-.5{0(Q\^}d0{Q 

(2.3.103) 
= [1  - PHZ„0)V' j_^ 0(Q (277)- 5 exp{-.5 WQ]^} d9(Q 

+ p(Zg,0) 4 |_^ (277)- ^ exp{-.5 [0(Cg)n d0(Q, 
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where some of the constants in the integration have been written outside of the integrals for convenience. The 
first integral on the right side of the equality in (2.3.103) is merely the mean of 0((^,), fJi[0(Q] which is known 
to be zero. Thus, the product represented by the first term on the right side of the equality in (2.3.103) is also 
zero. The second integral on the right side of the equality represents the total area in the standard normal 
distribution which is known to be unity. Thus, one may write 

e (277)-5 exp{-.5 WQn de(Q = p{Z^,0) (,„ (2.3.104) 

which can be substituted into (2.3.100), producing 

/x(0| u^= \) = %(e\ u^ = 1) 

= ^J    p(Z^„0) 4 (277)--5exp(-.5 (2)^^^. (2.3.105) 

Since p(Z^,0) is a constant in the integration of (2.3.105), one has 

IJi(0\ u, = 1) = foiO\u^ = 1) 

= p{Z^,0)yj    4(27r)-5exp(-.5 42)^^^, (2.3.106) 

where a substitution from (2.3.43) yields 

fj.{0\ M, = 1) = piZ^,0) p.{Z^ I «,- = 1) , (2.3.107) 

which may also be expressed as 

M(e !",=  !) = piZ,,6) ^ (2.3.108) 

because of (2.3.48). Equation (2.3.108) represents a convenient expression for the least squares estimator of 6 
given a correct answer to item g. This estimator is merely the product of a regression weight—in this case the 
correlation piZ^,0), because both Z^ and O have a standard deviation of unity—and the value of the density 
at ■y^, in the standard normal distribution, (t>(y^), divided by the unconditional probability of a correct answer to 
item g, Pg. 

Specific Case: The Mean of O Given an Incorrect Answer to Item g, pi{6 \ Ug = 0).  In order to obtain 
an expression for the mean of 6 given an incorrect answer to item g one must evaluate the defining relationship 

p.(61H, = 0) = %{& IM, = 0) = J''^ |_^ e <i,HC„e) de dc^, .    (2.3.109) 

where 4>\lg,6) is given in (2.3.50) and verified as the joint density function in the discussion surrounding 
(2.3.52). A substitution from (2.3.50) into (2.3.109) allows one to write 

fMiO \ u^ = 0) = %{e \ Ug = 0) = — j_^ j_^ e <j)i^^,B) de dig. (2.3.iio) 

After substitution from (2.3.16) into (2.3.110), one may write 

M0 \ug = 0) = %{e I «, = 0) 

(2.3.111) 

where substitutions from (2.3.18) and (2.3.20) provide 

At(e I Ug = 0) = %{e I «^ = 0) 

^ J_l J_. ^(27r)- 5 exp{-.5 {kQ?} d6{Q {ITT)-■' exp(-.5 Cj) dCg.     (2.3.112) 
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The innermost integral in (2.3.112) is again equal to %(0 \ ^^), or the product p(Z^,0) ^^ for each particular 
value of Z^ as proved in (2.3.104). A substitution from (2.3.104) into (2.3.112) then allows the writing of 

/i,(0 I M^ = 0) = %ie I «,, = 0) 
1 r^< = —        p(Z^,e) i/lnr' exp(-.5 Q d^^, (2.3.113) 

where the constant p{Zg,0) may be written outside of the integral. One then has 

/u,(0|«, = 0) = %(e\ u^ = 0) 

= p{Z^,e) — I     ^(277)-= exp(-.5 Q) dC,, (2.3.114) 

where a substitution from (2.3.56) allows one to write 

/x(0| M, = 0) = p(Z^,0) p(Z^ I «, = 0) (2.3.115) 

which may also be expressed as 

p,(0\ M, = 0) =  - p{Z^,0)=^ (2.3.116) 

because of (2.3.59). Equation (2.3.116) provides a convenient expression for the least squares estimator of 0 
given an incorrect answer to item g. This estimator is merely the negative of the product of a regression weight— 
in this case, p(Z^,0), because both Z^ and O have standard deviations of unity—and the value of the density 
at y^ in the standard normal distribution, <^(7^,), divided by the unconditional probability of an incorrect answer 
to item g, Qg. 

General Case. The general case allows the examiner to prescribe the scale of ability or the mean and 
variance of 0*, p.(0*) and cr^iO*). Under this case, 0 may be viewed as resulting from the standardization of 
e* 

where this relationship indicates that 0 and 9* are equal when p{0*) equals zero and cr{0*) equals unity. Thus, 
the general case subsumes the specific case. In the general case, it is to be noted that 

e* = ea{0*) + p.{0*) (2.3.118) 

when (2.3.117) is solved explicitly for 6*. 
A note of explanation is in order for applications of the general case. The item parameters, a^ and b^ of 

(2.1.12) and (2.1.13), respectively, are not appropriate, except in one instance, for the general case. The sole 
exception is the subsumed specific case. For the general case, these parameters require transformations that 
produce a particular invariant result. When a desired mean, p.{0*), and variance, cr(0*), have been prescribed, 
the particular transformations are then known. These transformations provide 

(2.3.119) 
■'■ (7(0*) 

md ^ 

b* = b^ a(0*) + p.(0*) (2.3.120) 

that are appropriate in the general case which, of course, subsumes the specific case. 
The point of dichotomization on the standardized conditional distribution of Z^ given 9* may be defined 

as 

y„(e*) =  - a* (0* - b*). ' (2.3.121) 

The particular invariant result which must be produced by the transformations in (2.3.119) and (2.3.120) then 
requires that 

y^(9) = 7,,(0*) (2.3.122) 
t 
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which maintains an identical point of dichotomization on the Z^id) and the Z^id*) under a change in the scale 
of ability. This result provides that the probabilities yielding the item characteristic curve remain undisturbed by 
this transformation of the scale of ability. Substitutions from (2.1.15) and (2.3.121) into (2.3.122) yield 

-a^ (6 - b^) =   -a* (0* - bl). (2.3.123) 

Subsequent substitutions from (2.3.118), (2.3.119), and (2.3.120) into (2.3.123) provide the obvious equality 

-a, {6 - b^) =   -a^ (6 - b^) (2.3.124) 

in proof of the required invariant result and the appropriateness of (2.3.119) and (2.3.120) for the general case. 
Notice that the property of invariance does not pertain to the parameters, but to the result produced by particular 
transformations of the parameters. This relationship is made explicit in (2.3.123). 

The property of invariance illustrated for (2.3.122) produces a desirable result. This result guarantees 
that the probability of obtaming a correct answer on item g remains invariant under arbitrary prescriptions for 
the scale of ability, that is the mean and variance of 0*, ^(,(0*) and (7^(0*). Later in the discussion, there will 
be further cause to consider the property of invariance. 

For subsequent developments, expressions are required for the correlation, p(Z^,0), and the point of 
dichotomization on the continuous variable Z^,, y^, given the parameters a| and b*. These expressions will be 
derived here for future reference. 

In order to obtain an expression for p(Z^,0) given a|, (2.3.119) is solved explicitly for a^. This solution 
yields 

'      a^ = a* a{e*) (2.3.125) 

which can then be substituted into (2.3.28) to provide the desired results. After substitutions from (2.3.125) into 
(2.3.28), one has 

P(Z,M =  ,,   ^   '       ,^^,121 V (2.3.126) 

an expression appropriate for the general case. 
An expression for y^ given b* can be obtained through solving (2.3.120) explicitly for b^. This solution 

yields 

b* - fjLie*) 

which can then be substituted along with (2.3.126) into (2.3.27) to provide the desired result. After the substitution 
of (2.3.126) and (2.3.127) into (2.3.27), one may write 

■    [ ^     b* - fijo*) ■ ■ 
^'      |(a*)-2 + CT^(0*)].5' (2.3.128) 

an expression appropriate for the general case. 
For the general case, the least squares estimators of ability are merely the means of 0* given the two 

possible outcomes: the mean of O* given a correct answer to item g. ^i(0* | u^ = 1), and the mean of O* 
given an incorrect answer to item g, /xiO* | u^ = 0). These estimators of ability will now be derived for this 
general case. 

General Case: The Mean of 6* Given a Correct Answer to Item g, fj.(0* \ u^ = 1). In order to obtain 
an expression for the mean of 0* given a correct answer to item g, one must evaluate the defining relationship 

M(0* I «, =  1) = «(0* I M, =  1) = J    J_^ e* ct>*(C,,e) dOd^^, (2.3.129) 

where (/)*(^^,,e) is given in (2.3.37), verified as the joint density function in the discussion surrounding (2.3.39), 
and still appropriate because of (2.3.117) and (2.3.118). A substitution from (2.3.37) into (2.3.129) allows one 
to write 

M(0* IM, = 1) = %(e* IM^, = 1) = ^ j   j    e* </.((,,s) ded^^. (2.3. no) 
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After a substitution from (2.3.16) into (2.3.130), one may write 

IxiO* I Ug = 1) = %(e* I «,, = 1) 

= j\, J-. «*(27r)--ni - P^(Z„0)1-^   ^'^P(--5||1  _p2(^^0)].5J j ^e(27r)--^exp(-.5 4^) J^, 

.  ■ (2.3.131) 

where substitutions from (2.3.18) and (2.3.20) provide 

Ai(e* I M^ = 1) = ^(e* I «,, = 1) 

= ^ I    I      0* (27r)--= exp{- .5[0(g]2} rf0(Q (277)--5 exp(- .5 Q) d^^. (2.3.132) 

The innermost integral in (2.3.132) is merely the expected value of 0* given ^^,, %{0* \ ^^,), which represents 
the value of the coordinate of 0* for a point on the line of regression of 0* onto Z^ for the particular fixed 
value ^(,. Proceeding with an evaluation of (2.3.132), a substitution from (2.3.118) into the innermost integral 
in (2.3.132) yields 

J   ^ 0* (277)- 5 exp{-.5[e(4)]2} de(Q 

[0o-(0*) + fM{0*)] (27r)- 5 txp{- .5[d{Q]^} ddiCg). (2.3.133) 

The integral on the right side of (2.3.133) can be expressed as a sum of two integrals 

e* (2Tr)--'exp{-.5[0{Qf}de{Q 

= (7(0*) J   ^ 6 (277)-5 exp{-.5[0((,)]2} dd(Q 

+ M(0*) J   J277)--5exp{-.5[0(4)]2}rf0((^,), (2.3.134) 

where some of the constants in the integration have been written outside of the integrals for convenience. The 
first integral on the right side of the equality in (2.3.134) is merely the product p{Z^,0) ^^ as given by (2.3.104). 
Thus, the first term on the right side of the equality in (2.3.134) is merely the triple product p(Z^,0) aid*) (^. 
The second integral on the right side of the equality in (2.3.134) represents the total area in the standard normal 
distribution which is known to be unity. Thus, the second term on the right side of the equality in (2.3.134) is 
merely /u,(0*). Therefore, one may write 

e* (277)--5 exp{- .5[0((,,)]2} d'eiQ = 1^(0*) + P(Z^,0) <J{0*) ^,, (2.3.135) 

which can be substituted into (2.3.132) producing -        ,* 

^(0* I Mg =   1) = %(0* i u^ =1) 

= -j    [M(0*) + P(2,,0)<T(0*) (J (277)-5exp(-.5^2) J^,    (2.3.136) 

where the rightmost equality in (2.3.136) can now be expressed as the sum of two integrals. One may write 

ix(0* \u^=  1) = %i0* I M^, =  1) 

M0*) 
P, 

(277)-'exp(-.5^2)^^^ 

p(Z„0)^^J^ e^(27r)--^exp(-.5^2)^^^_^ ■   (2.3.137) 
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where some of the constants in the integration have been written outside of the integrals for convenience. 
Substitutions from (2.3,31) and (2.3.43) into (2.3.137) yield 

,1(6* I M^ =  1) = ^1(9*) + p(Z^,0) C7(e*) ,x(Z^ I ug =  1); (2.3.138) 

which may also be expressed as 

^(e* I M^ = 1) = fjiiO*) + p(Z^,0) 0(0*) ^^, (2.3.139) 

because of (2.3.48). This estimator is merely the product of a regression weight—in this case p(Z^,6) a(0*) 
because Z^ has a standard deviation of unity—and the value of the density at y^ in the standard normal distribution, 
(t>(yf,), divided by the unconditional probability of a correct answer to item g, P^, added to the mean of 0* 
MO*). 

General Case: The Mean of 0* Given an Incorrect Answer to Item g, /x(©* | u^ = 0). In order to obtain 
an expression for the mean of 0* given an incorrect answer to item g, it is necessary to evaluate the defining 
relationship 

y    r^ 
M(0* I M, = 0) = %(0* I «, = 0) =   I 9* 0^(4,0) ciedC,, (2.3.140) 

zc   J — ~c 

where <f)\^^,9) is given in (2.3.50), verified as the joint density function in the discussion surrounding (2.3.52), 
and still appropriate because of (2.3.117) and (2.3.118). A substitution from (2.3.50) into (2.3.140) allows one 
to write 

M(0* I «, = 0) = %(0* I „^, = 0) = -J- \' f   e* <i>(c,,e) do ^4. (2.3. i4i) 
x   J — yz 

After a substitution from (2.3.16) into (2.3.141), it is found that 

/x(0* I M^ = 0) = %(0* I «g = 0) 

e^,j_.j„.-*(2-);^n-pX,e)]--^exp(^-.5|^^-g^|-^[   }de(2n)-^c.p(-.5Cl)dC, 

(2.3.142) 

where substitutions from (2.3.18) and (2.3.20) provide 

MO* \ug = 0) = %(0* I «^ = 0) 

^ /I J-=c ^* (277)- 5 exp{-.5[e(g]^} d~e(Q (277)- 5 exp(-.5?^) dC,. 

(2.3.143) 

The innermost integral in (2.3.143) is the expected value of O* given ^^,, %(0* | ^,), or merely, 
fj.(0*) + P(Z^,0) a(0*)^^, as proved in (2.3.135). A substitution from (2.3.135) into (2.3.143) then allows 
the writing of 

MO* I Mg = 0) = %(0* I M^ = 0) 

= -]^^lMO*) + p(Z^,0)a(0*)Q(27r)--'exp(-.5e,)di^,     (2.3.144) 
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where the rightmost equaHty in (2.3.144) can now be expressed as the sum of two integrals. One may write 

IJL(e* I u^ = 0) = %(0* I u^ = 0) 

M(e*) (27Tr'cxpi-.5c^di^ 

■ + p(z^,e)~-^r i^(2Trr'cxp(-.5ci)ds^, ■ (2.3.145) 

where some of the constants in integration have been written outside of the integrals for convenience. Substitutions 
from (2.3.35) and (2.3.56) into (2.3.145) allow one to write 

MO* I «, = 0) = M(0*) + p{Z^,0)a{e*)tx(Z^ I «g = 0) (2.3.146) 

which may also be expressed as 

M(0* I «,, = 0) = /x(e*) - p(Z,„e)(r(0*) ^^ (2.3.147) 

because of (2.3.59). This estimator is merely the product of a regression weight—in this case p{Z^,0)a(0*) 
because Z^ has a standard deviation of unity—and the value of the density at y^, in the standard normal distribution, 
4>{yi,), divided by the unconditional probability of an incorrect answer to item g.Q^,, subtracted from the mean 
of 0*,/j.(e*). 

The expressions for the least squares estimators of O* provided by (2,3.138) and (2.3.139) and by 
(2.3.146) and (2.3.147) will have further use in later derivations in Chapter 5. Notice that the estimators provided 
by (2.3.108) and (2.3.116) may be viewed as resulting from (2.3.139) and (2.3.147), respectively, under the 
assumption that /i-(0*) is zero and cP-(0*) is unity. Since the specific case can be directly obtained from the 
general case through this simplifying assumption, later developments in ability estimation will be primarily 
concerned with the general case. Earlier it was noted that the general case has the more interesting practical 
implications. In Chapter 5, the sequential estimation of 0* given the free-response items constituting a tailored 
test will become of concern. 
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3.  EFFECTS OF BINARY SCORING: A SUBMODEL 
FOR MULTIPLE-CHOICE ITEMS 

3.1  The Three-Parameter Normal Ogive Submodel 

Consider the situation where the possible answers to a question posed by an item have been assigned 
ordered scores on the basis of their relative correctness. Suppose that it is then possible to assign recognition 
scores to individuals. Let this score for a given individual be defined as the value of the most correct answer 
that would be recognized as correct on the given occasion. For p items designed to measure the same ability, 
the ordering of scores for the possible answers generates p continua of item scores. When the frequencies of 
individuals with identical recognition scores are associated with their corresponding ordered scores, random 
variables such as the Z^ of Chapter I are the result. 

In the case of a multiple-choice item, one of its alternatives serves as a correct answer. The score assigned 
to the answer chosen for the correct alternative is then y^, the point of dichotomization on the random variable 
Z^. As a result, individuals with recognition scores equal to or greater than y^,, that is those who recognize the 
correct alternative as well as better answers than the correct alternative as correct, receive a binary score of one. 
The remaining individuals then guess. Successful guessing on the given item occurs at a specific rate, and this 
rate of success occurs at random among those individuals who are unable to recognize the correct alternative on 
the given occasion. Individuals who guess successfully also receive a binary score of one, while those who do 
not receive a binary score of zero. Hence, U'^ has two possible realizations: 

u'g =  1 When ^^ 5= y^ (correct alternative recognized) or 
if; < yy (correct alternative not recognized: guessing successful) 

u'f, = 0        When ^^ < y^ (correct alternative not recognized: guessing unsuccessful) 

where the prime on U'g indicates that item g, a multiple-choice item, is influenced by guessing. Most of the 
expressions in this section will have their counterparts in the two-parameter normal ogive submodel. As in the 
instance of M^,, some of these expressions will be directly influenced by guessing. To maintain clarity in the 
discussion, the expressions influenced by guessing will be denoted through the use of a prime. Unprimed 
expressions will be those uninfluenced by guessing that are identically defined under both submodels. 

The rate of successful guessing on item g is not solely determined by the number of its alternatives. For 
instance, the relative attractiveness of the alternatives will have some influence. An alternative can appear more 
or less attractive than others to those unable to recognize the correct answer. The condition is permissible because 
this submodel does not assume that guessing occurs at random with respect to the item alternatives when the 
correct alternative is not recognized. The requirement that individuals respond at random to the item alternatives 
when the correct alternative is not recognized goes beyond the statement of this submodel. The submodel merely 
posits that obtaining a correct answer to item g through guessing occurs at random at a specifiable rate Cg for 
the subpopulation on the subinterval of Z^ where ^^, is less than y^. 

The proposition that extant multiple-choice items contain alternatives of equal attractiveness—a necessary 
condition to justify the assumption that guessing occurs at random with respect to the item alternatives—is readily 
disconfirmed with empirical data. 

In conventional item analyses, one finds that the proportions responding to the incorrect alternatives of 
each multiple-choice item g are not always—as required by this proposition—equal. The typical observation is 
that of the inequality of these proportions. 

Let Cg represent the rate of successful guessing on item g when ^g is less than y,,. As a consequence, Cg, 
as will be seen in (3.1.17), is defined as, or fixed by, the lower asymptote of the item characteristic curve. Since 
Cg is fixed, Z^ then completely determines the binary random variable Ug. Again the Z^ are affected by measurement 
error. Thus the Ug are likewise affected. The transformation of Zg into Ug again results in a transformation of 
the true score metric. A new true score variable T'g and a new error score variable Eg are again implicitly produced 
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by the transformation of Z^ into U'^. For any individual / on occasion o,t\^ represents tlie individual's true score 
on binary item g while e;,,„ represents the individual's error score on binary item g. True score is defined as the 
expected value of the M^,,, for individual / over testing occasions, that is, 

?«/ = %. ^,,/„ (3.1.1) 

and error score is defined as 

e'gu, = ",;,„ - f^i- (3.1.2) 

Given the definition of true score presented in (3.1.1), T,, is the least squares estimate of f/' given 9. 
All individuals with ability equal to that of individual i,d= O,, have identical true scores, 

r, = %{V^\e = 0.), (3.1.3) 

which is a realization of the random variable 

T^ = %(U'^\0). (3.1.4) 

The expectation relationship in (3.1.4) defines T'^ as the least squares regression function of U'^ onto O. 
For a multiple-choice item g, the functional form of the regression of (/;, onto O is the item characteristic 

curve for the three-parameter normal ogive of latent trait theory (Lord & Novick. 1968). In this case, the expected 
value of Ug given 6 is 

T^ = %{Vg\e) =    2   «',Pr(«,,|0) 

= (O)Pr(w;, = 0| 0) + (I)Pr(M;, = I I 6») 

. = Pr(«g = 1 |e) (3.1.5) 

where the probability of a correct answer given 6 has changed in relation to the two-parameter case. Using the 

definitions of '^B) and y,(6») of (2.1.10) and (2.1.11), it is found that 

Pr(M;, =  \\6) = Pr|Z,(0) 3= r,(0)J + q, Pr[4(0) < y^.(0)J (3.1.6) 

which flows from the discussion of the manner in which Z^ determines U'^. The hypothetical relation between 
Zg and f/; is portrayed in Figure 3.1.1, where the shaded areas on each conditional distribution, 2.^(6), represent 
the terms in the rightmost equality of (3.1.6). Since the area under the standard normal distribution is unity, it 
is to be noted that due to (2.1.16) 

MZ,(e)< y^id)] =  \  ^ ?r\Zg(e) ^ y^(e)l '     '(3.1.7) 

which allows some simplification in (3.1.6). The substitution of (3,1.7) into (3.1.6) yields 

Pr(M;, =  \\d) = PrlZ,(e) S. 7^,(0)1 + r, {1  - Pr|Z,.(0) ^ ^^,(0)]} (3.1.8) 

or, after consulting the identities provided by (2.1.16) and (2.1.20) leads to 

Pr(M;, =  I I 0) = P^{e) + r, [1  - PgiO)] = Pgid) + q,e,(0) (3.1.9) 

which can be compared to its two-parameter counterpart for free-response items. This expected value is designated 
as P'giO) in order to distinguish it from its corresponding term in the two-parameter submodel and acknowledge 
the contribution of guessing as indexed by the rightmost terms in each of the two equalities on the right side of 
(3.1.9). This designation yields 

p,{d) = Pg(e) + cg [1 - Pgid)] = p^iO) + c^Q^ie) , ^ (3.1.10) 

which indicates that the probability of obtaining a correct answer on item g is equal to the probability of recognizing 
the correct alternative, P^id), plus guessing correctly at a rate, q„ when with probability, [ \-Pg(0)\ or Q,(0), 
the correct answer is not recognized. For computational convenience, (3.1.10) is usually rearranged as 

P.id) = c, + (I  - Cg)Pg{d).   ., , , (3.1.11) 
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u' = 1 (Shaded Area) 

»' =0 (Unshaded 

Figure 3.1.1. Hypothetical relations among the item continuum Z^, the multiple-choice, binary item U'^, and 
the latent trait O. - '■ 

Substitutions from (2.1.18) into (3.1.11) now allow one to write 

P'^id) = c, + (1 - c,) (P[-y,(6)] = c, + (1 - c,) <P[a^(e - b^)] (3.1.12) 

where <P[*] is again by definition the cumulative normal distribution function as expressed in (2.1.18). 
Note that the probability of answering a multiple-choice item g incorrectly given a fixed value of ability, 

Q'g(0), is provided by 

Q'^id) = (1 - c,) Pr[Z,,(0) < 7,(6)] = (1 - c,) (277)- 5 exp{-.5[(,(0)]2} dl^id)     (3,1.13) 

which after substitutions from (2.1.20) yields 

2,(0) = (.1 - q,) G,(0) = (1 - c,) 1>[y,(d)] = (1 - q,) $[-fl,,(0-6,)], (3.1.14) 

The conditional probability, Q'g{6), provided in (3.1.13) and (3.1.14) is the complement of the conditional 
probability, P'i.{6), provided in (3.1.10) through (3.1.12), because 

p,(e) + Qje) = 1 (3.1.15) 

which may be verified through the substitution of the second equality in (3.1.14) and the rightmost equality in 
(3.1.10) into (3.1.15). After these substitutions are made, one may write ; 

p,{e) + Q,(e) = 1 (3.1.16) 

a relationship established in connection with (2.1.20). 
- . -■'(■ . .   .   . ■ 

The Parameters 

Equation (3.1.10) represents an expression for the item characteristic curve, the item true score function 
T'g, and the regression of a multiple-choice, binary item Ug onto O. This functional form provides the probability 
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of a correct answer to item ^ as a function of O. The parameters of this expression are a^, b^, and c^, where 
a^ and b^ are defined in (2.1.12) and (2.1.13) and q, is the coefficient of guessing, that is, the rate at which 
successful guessing occurs among individuals who do not recognize the correct alternative. 

Figure 2.1,1 for a free-response item g may be compared with Figure 3.1.1 for a multiple-choice item 
g. Notice that the dichotomization of the Z^{d') and 1^(9") at 7^(0') and y^,(e"), respectively, occurs in both 
figures. Actually, the shaded areas below 7^,(0') and y^{ff') in Figure 3.1.1 for the multiple-choice case represent 
the only departure from a dichotomization of the conditional distributions in determining correct and incorrect 
answers. Thus, there is a similarity between the two- and three-parameter submodels. This similarity is illustrated 
in Figure 3.1.2, which presents the item characteristic curve (solid function) for a multiple-choice item g. Also, 
in the figure, a dashed function is presented. This dashed function is actually a two-parameter curve representing 
the probability that the correct alternative will be recognized given 0. The solid regression function, P;(0), can 
be viewed as the curve that connects the conditional proportions that are the output of (3.1.10) at each level of 
0. The dashed function is obtained from the leftmost term in the rightmost equality in (3.1.10), namely, P,{0), 
where ^^,(0) is based, as in the free-response case, on the parameters a^ and b^. Thus, the earlier discussion of 
these parameters is still fully pertinent. What is new is the contribution of guessing, which can be obtained from 
the rightmost term on the right hand side of (3.1.10), namely, the product c^Q^id). As pictured in Figure 3.1.2, 
this contribution is represented by the vertical distance between the solid and dashed functions for a given value 
6. Notice that the coefficient of guessing, c,,, is constant with respect to the random variable 0, but that the 
contribution of guessing diminishes as 6 increases. Guessing is only invoked when the correct alternative is not 
recognized. Since the probability of recognizing the correct alternative is an increasing function of latent ability, 
the product of its complement and a constant is a diminishing function of latent ability. Notice in Figure 3.1.2 
that c^ is the lower asymptote of the item characteristic curve as measured on the ordinate. More formally, then. 
Cg is defined as 

c^ =     lim    P'Jd), 
e -> -X 

the limiting value (lower asymptote) of P'^(6) as 8 approaches negative infinity. 

(3.1.17) 

8{U'g\e) = P'giO) 

Figure 3.1.2. The item characteristic curve or the regression (solid function) of a binary, multiple-choice item 
U'^ on the latent trait 0 
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At this juncture, some numerical examples are helpful. These examples will highlight the relationships 
between Figure 3.1.1 and Figure 3.1.2 for item g given its parameters. 

Example 3.1.1. The slope of the regression of Z^ onto O in Figure 3.1.1 is .86. This 
; . value is also p{Zg,0) because both Z^ and O are depicted as distributed with a mean of zero and 

a variance of unity. Thus item discriminatory power, a^, as given by (2.1.12) is 1.6853. In Figure 
3.1.1, the ordinate and abscissa are both portrayed for the range of values from —3.0 to +3.0. 
The projection of the point of intersection of the line segment extending horizontally through y^, 
and the line of regression, %{0 \ ^^), occurs at a value of 1.1628. Thus, b^ is equal to 1.1628. 
The distributions of Z^ given 9 are symmetric about their means which coincide with the line of 
regression, %{Z^ \ 0). Hence, at this intersection where 0 equals b^, Pgib^), the probability of 
recognizing the correct alternative to item g,K .5. This probability may be ascertained by examining 
the dashed function in Figure 3.1.2. The probability of a correct answer to this multiple-choice 
item g 2A 9 equal to b^, P'gib^), is .555 as may be judged through the examination of the solid 
function in Figure 3.1.2. The lower asymptote of the item characteristic curve for this item g, as 
may be verified by inspection of Figure 3.1.2, is .11. Since c^ is . 11 and Pg(,9) is .50 at 9 equal 
to bg, Pg(b^) as evaluated by (3.1.11) is .555. 

Example 3.1.2. In Figures 3.1.1 and 3.1.2, 0' has the value of -1.10. When 7^,(0) of 
(2.1.15) is evaluated at 9', 7^,(6') is found to equal 3.8135. Note that the standardized conditional 
distribution of Zg(9'), as well as that of Zg(ff'), is displayed in Figure 3.1.2 as ranging in value 
from — 3.0 to + 3.0. This range of values accounts for .9973 of the probability or area under the 
curve. Thus, the area above y(9') on Z^{9'), the standardized conditional distribution of Z^ given 
9', is provided by (2.1.18) as .00. This value oi P^{9') is indicated by the relationship between 
jgiff), the point of dichotomization on Zg(9'), and Zg(9'). The probability of recognizing the 
correct alternative to item g given 9' is negligible. However, the probability of obtaining a correct 
answer to item g given 9', Pg(9'), is not negligible. Since q, equals .11 and Pf.(9') equals .00, 
P'^i9), when evaluated by (3.1.11) at 9', is found to be .11. This probability is represented in 
Figure 3.1.2 by the shaded area in the standardized conditional distribution of Z^,((?'). This shaded 
area occurs in the effective range for Z^(9') which is below the point of dichotomization on Zg(9'), 
7,(0'). 

The value of . 11 for P\,{9') represents the probability of obtaining a correct answer to item 
g given a standard ability score of — 1.10. Thus, a point may be placed in Figure 3.1.2 with the 
coordinates of .11 on the ordinate, P\,{9), and 9', — 1.10, on the abscissa O. 

Example 3.1.3. In Figures 3.1.1 and 3.1.2, 9' has the value of 1.00. When y^9) of 
(2.1.15) is evaluated at 0', it is found that yg(9") equals .2744. The area above yg{6") on Zg{9"), 
the standardized conditional distribution of Zg given 9", is provided by (2.1.18) as .3919. This 
value of Pg(9"), the probability of recognizing the correct alternative to item g, is portrayed in 
Figure 3.1.1 as the shaded area in the standardized conditional distribution of Zg{9") above the 
point of dichotomization y^,(f^"). The probability of obtaining a correct answer to item g given 9' 
is obtained from (3.1.11). Given c\ equal to .11 and y^(0") equal to .3919, an evaluation of 
(3.1.11) yields .4588 for this probability, P'f,{ff'). This probability is represented in Figure 3.1.1 
by the shaded area in the standardized conditional distribution of Zg{9") which occurs both above 
and below the point of dichotomization, y^iff'). In this context, y^iO) might be referred to as the 
threshold of recognition given 9. As discussed earlier, obtaining the correct answer to multiple- 
choice item g, however, is not the same as recognizing the correct alternative. The selection of 
the correct alternative or obtaining a correct answer to multiple-choice item g occurs through 
successful guessing when the threshold of recognition on Z^((?) has not been reached. 

The value of .4588 for P'g{9") represents the probability of obtaining a correct answer to 
item g given a standard ability score of 1.00. Thus, a point may be placed in Figure 3.1.2 with 
the coordinates of .4588 on the ordinate, Pg{9"), and 9", 1.00, on the abscissa 0. 

The item characteristic curve of Figure 3.1.2 can be constructed by repeating the numerical process 
illustrated in Examples 3.1.2 and 3.1.3 for a sufficient number of points equally spaced on the abscissa, 0. It 
is useful to be able to examine the item characteristic curves for various items given their parameters. The 
characteristic curve for a multiple-choice item g, given its parameters, can be conveniently produced for this 
purpose through the aid of a plotter and the formulation as illustrated in Examples 3.1.2 and 3.1.3 for the 
arbitrary points 9' and 9". 
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3.2. Further Consequences of the Submodel 

Given the basic model t'rom which the three-parameter normal ogive submodel is derived, it is known 
that the joint distribution of Z^ and O is still bivariate normal. This condition of bivariate normality obtains even 
though the phenomenon of success due to guessing on multiple-choice items has been accommodated in this 
submodel. As in the case of the two-parameter submodel, this condition facilitates the derivations of convenient 
mathematical expressions. Again, the derivations for these expressions follow from defining relationships within 
the bivariate normal distribution. In this section, these expressions will be presented and numerically illustrated 
using multiple-choice item n as portrayed in Figure 3.1.1 for illustrative purposes. Given the three-parameter 
normal ogive submodel, convenient expressions will be presented for: 

1. The unconditional probabilities for the realizations of U'^. 
(a) The probability of a correct answer to item g, Pr(M;, =  1). 
(b) The probability of an incorrect answer to item g, Pr(M^, = 0). 

2. The conditional means of Z^ given the realizations of IJ\. 
(a) The mean of Z^, given a correct answer to item ^, /u,(Z^, | «', = 1). 
(b) The mean of Z^ given an incorrect answer to item g, iJ-iZ^ \ M', = 0). 

3. The conditional variances of Z^, given the realizations of (/j,. 
(a) The variance of Z^ given a correct answer to item g, cr{Z^ \ u'^ =1). 
(b) The variance of Z^ given an incorrect answer to item g, cr^{Z^ | u',, = 0). 

4. The least squares estimators of ability given the realizations of U'^. 
(a) Specific case. 

(1) The mean of 0 given a correct answer to item g, ix{0 \ u'^ =1). 
(2) The mean of O given an incorrect answer to item g, ij.(0 \ u'^ = 0). 

(b) General Case. 
(1) The mean of 0* given a correct answer to item g, /a(0* | u'^ =  1). 
(2) The mean of 0* given an incorrect answer to item g, ;LI(0* | U'^ = 0). 

These expressions will be derived in Section 3.3. For those readers seeking a general understanding, Section 
3.3 may be omitted without loss of continuity. 

The Unconditional Probabilities for the Realizations o^ U'g 

The binary random variable (/', can realize only one of two possible values. In the instance of a correct 
answer to a multiple-choice item g, u'^, the realization of f/',, equals one. In the instance of an incorrect answer 
to a multiple-choice item g, the realization of U'^, u'^ equals zero. 

The Probability of a Correct Answer to Item g, Pr(w', = I). This unconditional probability is designated 
P'^. Most commonly, it is known as the p-value for multiple-choice item g. A convenient expression for this 
probability is 

Pr(«;, =  1) = P'^ = r, + (1  - c^)P^ = q, + (1  - q,) 0[-yJ, (3.2.1) 

where q, is the guessing coefficient as defined in (3.1.17) and P^. which equals (p[ - yj, is the probability of 
recognizing the correct alternative to multiple-choice item g as given by (2.2.1). Notice that y^, as required in 
an evaluation of (2.2.1), is identically defined under both the two- and three-parameter normal ogive submodels. 
This situation exists because y^ as seen in (2.2.2) is determined by pZ^,0) and b^, both of which are identically 
defined under these submodels. The difference under these submodels resides in the interpretation of the probability 
P^. In the previous context, this unconditional probability was that of obtaining a correct answer to a free- 
response item g. In the present context, this unconditional probability represents that of recognizing the correct 
alternative to a multiple-choice item g. 

Example 3.2.1. It is known from Example 3.1.1 that p(Z^,0), the correlation between 
the continuous variables Z^ and O, is .86, and that h^, the item difficulty parameter, is 1.1628. 
Thus y^, the point of dichotomization on the continuous variable Z^. is found to be 1.00 when 
(2.2.2) is evaluated. Hence, P^, the unconditional probability of recognizing the correct answer 
to multiple-choice item g as given by (2.2.1), is .1587. Since P^ is .1587 and q,, as determined 
in Example 3.1.1, is . 11, P;, as evaluated by (3.2.1) is .2512. The unconditional probability P'^ 
is that of obtaining a correct answer to multiple-choice item g. 
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The value of Pg, .1587, represents the size of the shaded area above y^ in the marginal 
distribution of Zg as portrayed along the ordinate in Figure 3.1.1. If y^, is considered the threshold 
of recognition on Zg, then the size of this shaded area represents the probability of recognizing 
the correct alternative to multiple-choice item g. The value of P'^, .2512, represents the size of 
the combined shaded areas both above and below jg in the marginal distribution of Zg as depicted 
along the ordinate in Figure 3.1.1. The size of these shaded areas represents the probability of 
obtaining a correct answer to multiple-choice item g. 

Since obtaining a correct answer to multiple-choice item g is not fully determined by a dichotomization 
of a normally distributed random variable, it is clearly a contradiction given this submodel to estimate p(Z^,0), 
the correlation between the continuous variables Zg and O, through the use of the biserial correlation. Furthermore, 
since obtaining correct answers to any two multiple-choice items g and h is not fully determined by the dicho- 
tomizations of the continuous variables Zg and Z,,, it is clearly a contradiction given this submodel to estimate 
p(Zg,Zi,), the correlation between the continuous variables Zg and Z/,, through the use of the tetrachoric correlation. 
The use of the tetrachoric correlation with multiple-choice items in factor-analytic studies is, unfortunately, 
widespread. This practice is inapproriate because the submodel considered here has been found to be valid for 
multiple-choice items (Urry, 1977). 

The Probability of an Incorrect Answer to Item g, Pr {u'g = 0). This unconditional probability is designated 
as Q'g. A convenient expression for this probability is 

Pr(«; = 0) = e; = (I - Cg) Qg = (I ^ Cg) cp[yg], (3.2.2) 

where Cg is the coefficient of guessing as defined in (3.1.17) and Q^, which equals <P[yg], the probability of 
not recognizing the correct alternative to multiple-choice item g, is given by (2.2.3). In the context of the two- 
parameter normal ogive submodel, this unconditional probability was that of obtaining an incorrect answer to a 
free-response item g. In the present context, this unconditional probability is that of not recognizing the correct 
alternative to a multiple-choice item g. Since the rate of successful guessing on item g is Cg, (1 - Cg) is the rate 
of unsuccessful guessing. Thus, the product of (1 - q,) and Qg as given in (3.2.2), represents the probability 
of not recognizing the correct alternative to multiple-choice item and guessing incorrectly. That is to say, this 
product, Q'g, represents the unconditional probability of an incorrect answer to a multiple-choice item g. 

Example 3.2.2. It is known from Example 3.2.1 that yg, the point of dichotomization on 
Zg for item g of Figure 3.1.1, is 1.00. Hence Qg, the unconditional probability of not recognizing 
the correct alternative to multiple-choice item g as evaluated with (2.2.3), is .8413. Since Qg is 
. 8413 and Cg, as determined in Example 3.1.1, is . 11, gj^ as evaluated through the use of (3.2.2) 
is .7488. Notice that this value is the complement of P'g or .2512 as is g^ or .8413 the complement 
of P, or. 1587. 

The value of Qg represents the size of the area both shaded and unshaded below y^, in the 
marginal distribution of Zg as portrayed along the ordinate in Figure 3.1.1. The size of this area 
represents the probability of being below the threshold of recognition on the continuous variable 
Zg. The value of Q'g or .7488, represents the size of the unshaded area below y^ in the marginal 
distribution of Zg as depicted along the ordinate in Figure 3.1.1. This unconditional probability 
is that of obtaining an incorrect answer to multiple-choice item g, that is to say, the probability 
of not recognizing the correct alternative to multiple-choice item g and guessing unsuccessfully. 

If yg were actually a cut score on an observed continuous variable Z^, and that subpopulation normally 
rejected were also selected at random at a rate c^, then P'g would be the selection ratio or the probability of being 
selected, and Q'g would be the probability of being rejected. In this submodel, there also exists an analogous 
relationship between the binary scores on a multiple-choice item g, either a one or a zero, and this particular 
method of selection or rejection on an observed continuous variable. This analogy, as well as the one drawn 
earlier with respect to the two-parameter normal ogive submodel, provides the basis for later developments in 
Chapter 5. In that chapter the tailoring algorithms will be derived through the use of selection theory. This theory 
is applicable when the method of selection or rejection can be specified. 
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The Conditional Means of Zg Given the Realizations of L/g 

The mean of Z^ can assume one of two possible values. When multiple-choice item g is answered 
correctly, M^,, the realization of the binary random variable U'^, equals one. Thus the mean of Z^ given a correct 
answer to multiple-choice item g is designated /x(Z^, \ u\ = 1). When multiple-choice item g is answered 
incorrectly, u\, the realization of the binary random variable U'^, equals zero. Thus the mean of Z^ given an 
incorrect answer to multiple-choice item g is designated /x(Z^ | u'^ = 0). 

The Mean of Z^ Given a Correct Answer to Item g, fJi(Z^ I "« = 1). A convenient expression for this 
mean is given by 

M(Z, I «; = 1) = (I - c,) ^, (3.2.3) 

where c^ is the coefficient of guessing as defined in (3.1.17); (jyiyg) is the density in the standard normal 
distribution evaluated at y^, the point of dichotomization on the continuous variable Z^, as provided by (2.2.5); 
and P'^ is the unconditional probability of obtaining a correct answer to multiple-choice item g as given by 
(3.2.1). 

Example 3.2.3. In Example 3.2.1 it was found that y^ and P'^ for item g as depicted in 
Figure 3.1.1 were 1.00 and .2512, respectively. Thus 0(7,;) as evaluated in (2.2.5) is .2420. 
Since c\,, as determined in Example 3.1.1, is .11, (f>(yg) is .2420, and P'^ is .2512, an evaluation 
of /x,(Zj, I u'^ = I) through use of (3.2.3) with these values yields .8574 as the mean of Z^ given 
a correct answer to multiple-choice item g. 

This value represents the mean of the combined shaded areas in the marginal distribution 
of Z^ as portrayed in Figure 3.1.1 along the ordinate. Remember this distribution is displayed for 
the interval on Z^, ranging from —3.0 to -1-3.0. 

The Mean of Z^ Given an Incorrect Answer to Item g. fj.{Z^ | u'^ = 0). A convenient expression for this 
mean is provided by 

MZ, I M; = 0) =  - ^, (3.2.4) 

where <^(7^,) is the density in the standard normal distribution evaluated at y^, the point of dichotomization on 
the continuous variable Zg, as provided by (2.2.5); and Q^ is the unconditional probability of not recognizing 
the correct alternative to multiple-choice item g as given by (2.2.3). Notice that this mean is obtained through 
a formula which is algebraically equivalent to that of (2.2.6) for its counterpart under the two-parameter normal 
ogive submodel. This algebraic equivalence obtains because success due to guessing in the three-parameter case 
is assumed to occur at random at a rate of c^, on the interval of Z^ from negative infinity to y^,. 

Example 3.2.4. For the item portrayed in Figure 3.1.1, it was found in Example 3.2.3 
that 0(7^,) equalled .2420, and in Example 3.2.2 that Q^ equalled .8413. When (3.2.4) is evaluated 
for these values of (t>{yg) and Q^, it is known that the mean of Z^ for the subpopulation obtaining 
an incorrect answer to multiple-choice item g, IJL(Z^ \ u'^ = 0), is — .2877. This value, — .2877, 
is the mean of Z^ for the subpopulation represented by the unshaded portion in the marginal 
distribution of Z^ as portrayed along the ordinate in Figure 3.1.1. 

If y^ were actually a cut score on an observed continuous variable Z^ and complete selection occurred 
when ^g was equal to or greater than y^ and random selection occurred at a rate c^ when (^ was less than y^, 
then p.{Zg I M^, = I) would be the mean of Z^ for the subpopulation explicitly selected on the continuous variable 
Zg. Accordingly, /u,(Z^ | u'g = 0) would then be the mean of Z^, for the subpopulation not selected, that is, the 
subpopulation explicitly rejected on the continuous variable Z^. 

The Conditional Variances of Zg Given the Realizations of U'g 

These variances of Zg can assume two possible values. When multiple-choice item g is answered correctly, 
the realization of the binary random variable U'g, u'g, is one. Hence the variance of Zg given a correct answer 
to a multiple-choice item g is designated as cr^iZg \ u'g = I). When multiple-choice item g is answered incorrectly, 
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u'g, the realization of tlie binary random variable U'^, is zero. Hence the variance of Z^ given an incorrect answer 
to multiple-choice item ,!,' is designated as o^{Z^ \ u'^ = 0). 

The Variance of Z^ Given a Correct Answer to Item g, a-(Z^ \ u'^ =  1). A convenient expression for 
this variance is provided by 

(r(Z, 1) 
(1 c,) <A(y,) 

n 
,) <b(y,) 

P: - y, (3.2.5) 

where r,, the coefficient of guessing for item f>. is defined by (3.1.17); y^,, the point of dichotomization on the 
continuous variable Z^, is provided by (2.2.2); (l){y^), the density in the standard normal distribution evaluated 
at 7^,, is given by (2.2.5); and P'^, the unconditional probability of a correct answer to multiple-choice item g, 
is provided by (3.2.1). 

Example 3.2.5. From Example 3.2.1 it is known that c^ is .11, -y^ is 1.00, and P;; is .2512 
for item g as depicted in Figure 3.1.1. It is also known for this item from Example 3.2.3 that 

, (l)iyg) is .2420. Given these values for Cg, y^, P;, and <^(y^), an evaluation of (3.2.5) yields 
1.1223 as (T^iZg I u'g = 1), the variance of Z,, given a correct answer to this item g. Thus, 
oiZg I M(, = 1), the standard deviation of Z^ given a correct answer to this item g, is 1.0594. 
The value 1.0594 is the standard deviation for the subpopulation represented by the shaded area 
in the marginal distribution of Zg as portrayed along the ordinate in Figure 3.1.1. 

The Variance of Z^ Given an Incorrect Answer to Item g, cr(Z^ 
th(is variance is given by 

(THZ, 0) 
^(y,) 0(y,) 

L e. + r. 

0). A convenient expression for 

(3.2.6) 

where y^,, the point of dichotomization on the continuous variable Z^, is given by (2.2.2); 4>(y,), the density 
in the standard normal distribution evaluated at y^, is defined by (2.2.5); and Q^, the probability of not recognizing 
the correct alternative to multiple-choice item g, is provided by (2.2.3). 

Example 3.2.6. It is known from Example 3,2.1 that y^, is 1.00 for item g as depicted in 
Figure 3.1.1. Also, from Example 3.2.2, it is known that Q^ is .8413; and from Example 3.2.3 
it is known that 4>{yg) equals .2420 for this item g. When (3.2.6) is evaluated with these values 
for y,;, Qg, and (piy^),^ ^(^g I «? = 0), the variance of Z^ given an incorrect answer to this item 
g, is .6296. Thus, aiZ^ \ u'^ = 6), the standard deviation of Z^ given an incorrect answer to this 

^ item g, is .7935. The value .7935 is the standard deviation for the subpopulation represented by 
the unshaded portion of the marginal distribution of Z^ as portrayed along the ordinate in Figure 

Notice that this standard deviation is obtained through a formula that is equivalent to the 
square root of (2.2.8), its counterpart under the two-parameter normal ogive submodel. This 
algebraic equivalence holds because the subpopulation obtaining an incorrect answer to a multiple- 
choice item g is assumed to result from a random depletion of the subpopulation on the interval 
from negative infinity to y^, on the continuous variable Z^. In the submodel for free-response items 
no depletion is assumed for the subpopulation on this interval. Since the depletion is random when 
it occurs, the standard deviation given an incorrect answer to item g is invariant with respect to 
these submodels where guessing is either accommodated or not accommodated. 

Least Squares Estimators of Ability Given the Realizations of L/g 

The specific and general cases are considered. In the specific case, ability, 6, has a mean. fj.(0), of 
zero and a variance, a^iO), of unity. In the general case, ability, 0*, has a mean, ix(0*), and a variance, 
o^(0*), that are prescribed by the practitioner for convenience in applications. 

Specific case. In this case, the estimators of ability, 6, depend on the realizations of the binary random 
variable U'^ or the correctness or incorrectness of the answer to multiple-choice item g. When the answer is 
correct, the estimator of ability is the mean of 9 for the subpopulation that would obtain a correct answer on 
item g. When the answer is incorrect, the estimator of ability, 6, is the mean of 6 for the subpopulation that 
would obtain an incorrect answer on item g. 
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Specific Case: The Mean of 6 Given a Correct Answer to Item g, ix{0 | u'^ = 1). This estimator is a 
least squares estimator because this mean provides that value of 6 about which the sum of squared discrepancies 
is minimized for the variable of ability given a correct answer to a multiple-choice item g. A convenient expression 
for this estimator of ability is provided by , - 

M(0|M; =  1) = p(Z,,©)(l  - c,)^^, • (3.2.7) 

where p(Zg,0), the correlation between the continuous variables Zg and 0, is known when a^, the item parameter 
of discriminatory power, is known through the use of (2.2.10); Cg, the coefficient of guessing for item g, is 
defined by (3.1.17); y^, the point of dichotomization on the continuous variable Zg, is known when p{Zg,0) 
and bg, the item parameter of difficulty, are known through the use of (2.2.2); (^(y^,), the density in the standard 
normal distribution evaluated at y^,, is defined by (2.2.5); and Pg, the unconditional probability of a correct 
answer to a multiple-choice item g, is given by (3.2.1). 

Example 3.2.7. In Example 3.1.1, it was found for item g as depicted in Figure 3.1.1 
that the parameter of discriminatory power for this item is 1.6853. When (2.2.10) is evaluated 
for this value of a^,, p(Zg,0) is found to be .86, which was the value obtained earlier through the 
inspection of Figure 3.1.1 in Example 3.1.1. In this example, q, was determined to be .11. In 
Example 3.2.1, jg and P[ were found to be 1.00 and .2512, respectively; and in Example 3.2.3, 
(f)(yg) was determined as .2420. With these values forp(Z^,,0), q,, jg, P'g, and Mjg), an evaluation 
of (3.2.7) yields .7374 as the value of the mean of 0 given a correct answer to this multiple- 
choice item ^i,'. The value .7374 represents the mean of the distribution depicted in Figure 3.2.1. 

The distribution in this figure is readily constructed. The value of the ordinate in this distribution, 
f(0 I u'g =   1), at a particular value of the abscissa, 0, can be obtained from 

f(0\ u'g = 1) = p'g{e)<t>m (3.2.8) 

e(4=i) 
-3.0 0 +3.0 

Figure 3.2.1. The distribution of ability given u'^ equal to one, 0{u'g =  1), or, identically, the distribution of 
0 resulting from incidental selection on 0 due to explicit selection on the continuous variable Z^, 

■        ■ where y^ is the cut score at or above which selection is complete and below which selection occurs 
at random at a rate c'. 

47 



for the range of values of 9 from negative to positive infinity. At any particular value 6, the ordinate is the 
product of P'^id), the probability of a correct answer to a multiple-choice item g as provided by (3.1.12), and 
(t>(,6), the density function for the assumed distribution of ability as defined by (2.2.12). When the values of the 
ordinate as obtained from (3.2.8) have been plotted with respect to the abscissa for the range of values from 
-3.0 to +3.0, the curve delineating the distribution in Figure 3.2.1 is the result. 

From integral calculus it is known that the area under the curve described by (3.2.8) is P'^, the unconditional 
probability of a correct answer to a multiple-choice item g. Thus, the density function for the distribution of 
©(M; = 1), C/)(0 I «; =  1), is provided by 

<He\u;= i)=^^^M^il, ■ (3 2.9) 
a 

where the area under the curve described by this equation is unity. In Equation (3.2.9), f{6 \ «', = 1) is the 
ordinate of the distribution of 0{u[, = 1) as given by (3.2.8) and P'^ is the unconditional probability of a correct 
answer to a multiple-choice item g as provided by (3.2.1). 

Earlier it was discussed that (2.1.11) and (2.1.15) in effect translated the point of dichotomization on 
the continuous variable Z^ into the y^(d), the points of dichotomization on the standardized conditional distributions 
of Z^ given 6, the Z^(0). This translation allowed the use of the cumulative normal distribution function, 0[*], 
in (3.1.12) to obtain P'^{0). the probability of a correct answer to a multiple-choice item g given 6. Now if y, 
were actually a cut score on an observed continuous variable Z^, then the y^(6) would be the corresponding cut 
scores on the standardized conditional distributions of Z^ given 6, the Z(e). Under this interpretation, P'XO) 
would be the probability of being selected given 6. In this situation, selection is complete at and above a cut 
score of y^{d) and occurs at random at a rate q, below a cut score of y^{6). As a consequence of this interpretation, 
the distribution depicted in Figure 3.2.1 as generated from (3.2.8) would be the distribution of O resulting from 
incidental selection on the continuous variable O due to explicit selection on an observed continuous variable 

Specific Case: The Mean of 6 Given an Incorrect Answer to Item g, /x(0 | u'^ = 0). This estimator is 
a least squares estimator because this mean provides that value of O about which the sum of squared discrepancies 
is minimized for the variable of ability given an incorrect answer to a multiple-choice item g. A convenient 
expression for this estimator of ability is given by 

/x(e I«; = 0) = - p{z^,e) ^ (3.2.lo) 

where p(Z^,6), the correlation between the continuous variables Z^ and O, is known when a^, the item parameter 
of discriminatory power, is known through the use of (2.2.10); y^, the point of dichotomization of the continuous 
variable Z^, is known when p{Z^,e) and b^, the difficulty parameter for item g, are known through the use of 
(2.2.2); 4>(yf;), the density in the standard normal distribution evaluated at y^, is defined by (2.2.5); and Q 
the unconditional probability of not recognizing the correct alternative to a multiple-choice item g is provided 
by (2.2.3). 

Example 3.2.8. In Example 3.1.1 p{Z^,0) was found to be .86 for item g as portrayed 
in Figure 3.1.1. The density in the standard normal distribution evaluated at y^, cfKyg), was found 
to be . 2420; and Q^, the unconditional probability of not recognizing the correct alternative to 
this item g, was found to be .8413. When (3.2.10) is evaluated for these values of p{Z^,0), 
4>(yf,), and Q^, /x(0 | u^ = 0), the mean of O given an incorrect answer to this multiple-choice 
item g, is known to be - .2474. The value - .2474 represents the mean of the distribution portrayed 
in Figure 3.2.2. 

The distribution of 0 given an incorrect answer to multiple-choice item g, as presented in this figure, is 
easily constructed. At a particular value of the abscissa, O, the ordinate of this distribution,/(6 | u'^ = 0) can 
be obtained from 

f(e\«; = 0) = e;(0) </>(&) (3.2.ii) 

for the range of values for 0 from negative to positive infinity. At any particular value 9, the ordinate is the 
product of Q'gid), the probability of an incorrect answer to a multiple-choice item g as provided by (3.1.14), 
and (f)(6), the density function for the assumed distribution of ability as defined by (2.2.12). When the values 
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O{u'g=0) 

+T.0 

Figure 3.2.2. The distribution of ability given u'^ equal to zero, Q{u'^ = 0), or, identically, the distribution of 
O resulting from incidental rejection on O due to explicit rejection on the continuous variable Z^, 
where y^ is the cut score below which rejection occurs at random at a rate (1 — c^,)- 

of the ordinate as obtained from (3.2.11) have been plotted with reference to the abscissa for the range of values 
from —3.0 to +3.0, the curve describing the distribution in Figure 3.2.2 is the result. 

From integral calculus it is known that the area under the curve delineated by (3.2.11) is Q'^, the 
unconditional probability of an incorrect answer to a multiple-choice item g. Thus, the density function for the 
distribution of 0(«^ = 0), </>(e | u'^ = 0), is given by 

fiO I u[, = 0) 
c«e I «; = 0) = ■'-^^^^  - (3.2.12) 

where the area under the curve described by this equation is unity. In Equation (3.2.12),/(0 | u'^ = 0) is the 
ordinate of the distribution of 0(u'^ = 0) as provided by (3.2.11), and Q'^ is the unconditional probability of an 
incorrect answer to a multiple-choice item g as given by (3.2.2). Equation (3.2.12) can be simplified to 

c^(B\ u' = 0) = ^^ ^ (3.2.13) 

after substitution from (3.2.11) into (3.2.12) because of (3.1.14) and (3.2.2). In (3.2.13), Q^id) is the probability 
of not recognizing the correct alternative to a multiple-choice item g given 6, as provided by (2.1.20); (j){6) is 
the density function for the assumed distribution of ability, as defined by (2.2.12); and Q^ is the unconditional 
probability of not recognizing the correct alternative to a multiple-choice item g, as given by (2.2.3). 

It has often been mentioned that (2.1.11) and (2.1.15) translate the point of dichotomization on the 
continuous variable Z^ into the jgid), the points of dichotomization on the standardized conditional distributions 
of Z^ given 6, the Z^iff). If y^ is considered a cut score on an observed continuous variable Z^, then the y^iff) 
would be the corresponding cut scores on the Zy(0). Under this interpretation (2^,(^) would be the probability of 
being rejected when rejection occurs at random at a rate (1 — q,) for the subpopulation below yf,(6) on Z^{d). 
This rejection rate is random because depletion on the interval from negative infinity to 7^,(0) on Z^iO) through 
lucky guessing is assumed to occur at a rate c^. As a consequence of this interpretation, the distribution portrayed 
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in Figure 3.2.2 as generated from (3.2.11) would be the distribution of O resulting from incidental rejection on 
the continuous variable O due to explicit rejection on an observed continuous variable Z,. 

General Case. In the general case of least squares estimators of ability, the practitioner prescribes the 
mean and variance of ©*, the continuous variable of ability. This prescription may be made in order to obtain 
estimates of ability yielding a particular mean and variance. A particular mean and variance may be convenient 
in certain applications. How this prescription is obtained and used is illustrated in Chapter 8. 

The parameters a^, item discriminatory power, and b^, item difficulty, appropriate for the specific case 
where the continuous variable of ability has a mean, /u.(0), of zero and a variance, a^(0), of unity were defined 
by (2.1.12) and (2.1.13). These parameters require a transformation in order to render them appropriate for the 
continuous variable O* where the mean, /u,(0*), and the variance, a^(0*), have been prescribed by the prac- 
titioner. After n.{0*) and (f-(0*) have been prescribed and when a^ and b^ are known, the parameters a*, item 
discriminatory power, and b*, item difficulty, that are appropriate for the continuous variable O* can be obtained 
from (2.2.17) and (2.2.18). The third item parameter, c*, the coefficient of guessing appropriate for 0*, is 
obtained from 

^'t = c,' (3.2.14) 

because the lower asymptote of the item characteristic curve as defined in (3.1.17) is invariant under a linear 
transformation of the variable of ability. 

When a* is known, p{Zg,6), the correlation between the continuous variables Z^ and O*, is given by 
(2.2.21); and when af and bf are known, y^, the point of dichotomization on the continuous variable Z, is 
provided by (2.2.22). Both p(Z^,6) and y^ are invariant under a linear transformation of the variable of ability. 

General Case: The Mean of 6* Given a Correct Answer to Item g, fM{6* \ u'^ = 1). This least squares 
estimator of ability is conveniently provided by 

^(0* I „; =1)= fj,(0*) + p(Z^,e) aiO*) /x(Z, I M; =   1) 

■';>••        -'        = M(e*) + P(2,,0)a<0*)(l - c,)^.     . (3.2.15) 

In (3.2.15), ^(0*) and aiO*) are the prescribed mean and standard deviation of the continuous variable 0*; 
p{Zg,0) is the correlation between the continuous variables Z^ and 0* as provided by (2.2.21); fiiZ, \ u', = 1) 
is the mean of Z^ given a correct answer to a multiple-choice item g as given by (3.2.3); c^ is the coefficient 
of guessing for a multiple-choice item g as defined in (3.1.17); y^ is the point of dichotomization on the continuous 
variable Z^ as provided by (2.2.22); ^(7^,) is the density in the standard normal distribution evaluated at y, as 
obtained from (2.2.5); and P'^ is the unconditional probability of a correct answer to a multiple-choice item g 
as provided by (3.2.1). 

The values for p(Zg,6), y^,, </)(y^,), P'^, and /LI(Z^, | U'^ = 1) remain invariant under a linear transformation 
on the scale of the continuous variable of ability. 

Example 3.2.9. In the illustration that will be provided in Chapter 8, it is deemed desirable 
to obtain ability estimates that will have a mean of 100 and a standard deviation of 20. If the 
precision of these estimates is held constant for all individuals at the termination of testing and 
comparable to that achieved with a test reliability, as will be defined and described in Chapter 7, 
of.90, then the mean, ju,(0*), must be prescribed as 100 and the variance, a^(0*), must be 
prescribed as 444.4444. The standard deviation must then be 21.0819. 

In Example 3.1.1, it was found that a^ for item g as portrayed in Figure 3.1.1 is 1.6853. 
When a* of (2.2.17) is evaluated given the values of 1.6853 for a^ and 21.0819 for CT<0*), a* 
is found to be .07994. When p(Zg,6) of (2.2.21) is evaluated with these values of a* and aiO*), 
piZg,0) is found to be .86 (the identical value that was obtained through the use of (2.2.10) in 
Example 3.2.7). Evaluating bf of (2.2.18) given the values of 1-.1628, as obtained from Example 
3.1.1, for b^, 100 and 21.08i9 as prescribed for /J-(0*) and C7<0*), respectively, b* is found to 
be 124.5140. In obtaining y^, from (2.2.22) given the values of .07994 for a*, 124.5140 for /?*, '"'' 
100 for piiO*), and 444.4444 for CT^(0*), jg is found to be 1.00 (the identical value that was 
obtained for y^ through the use of (2.2.2) in Example 3.2.1). Since y^, is still 1.00, 0(y^,) has 
already been determined. Given this value for y^,, <^(y^,) was found to be .2420 in Example 3.2.3. 
Since y^ is still 1.00 and c^ as found in Example 3.1.1 is .11, P'^ has also been previously 
determined. Given these values for y^, and Cg, P[, was found to be .2512 in Example 3.2.1. Since 
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c^, (/)(7j,), and P'^ are each invariant under a linear transformation on the scale of the continuous 
variable of ability, /x(Z,, | u'g = 1), as determined by (3.2.3) in Example 3.2.3, is still .8574. 

The least squares estimator of ability, ;u,(0* j u'^ = 1), can now be evaluated through the 
use of (3.2.15). In this situation for this multiple-choice item g. it is known that iJi{0*) is 100, ■ 
p{Z^,0) is .86, CT<0*) is 21.0819, and M^, | <, = 1) is .8574. When ^(,(0* | «; = 1) of (3.2.15) 
is evaluated given these values, the least squares estimator of ability is found to be 115.5450. 
The value 115.5450 represents the mean of the distribution depicted in Figure 3.2.1 after a linear 
transformation of 0 into 0*. This transformation can be effected pictorially by merely changing 
the values along the abscissa from — 3.0 to 36.7543, from 0 to 100, and from +3.0 to 163.2457. 
With this transformation on the scale of ability, the distribution of 0* given a correct answer or 
u'^ equal to one, 0*(u'^ = 1), is analogous to the distribution of ability after incidental selection 
on 0* resulting from explicit selection on an observed continuous variable Z^ where y^ is the cut 
score at and above which selection is complete and below which selection occurs at random at a 
rate c^. ■ 

General Case: The Mean of 0* Given an Incorrect Answer to Item g, /u,(0* | u[, = 0). This least squares 
estimator of ability is conveniently provided by 

/x(0* I M; = 0) = M(0*) + p(z,,0) CT(0*) M^, I w; = 0) 
(t)(y ) 

= At(0*) - p(Z,„0)a<0*)^. (3.2.16) 

In (3.2.16), |U-(0*) and (Ji0*) are the prescribed mean and standard deviation of the continuous variable 
0*; p{Zg,0) is the correlation between the continuous variables Z^ and 0*, as provided by (2.2.21); 
fi{Zg I M^ = 0) is the mean of Z^ given an incorrect answer to a multiple-choice item g as provided by (3.2.4); 
y^ is the point of dichotomization on the continuous variable Zg as obtained from (2.2.22); (^(y^) is the density 
in the standard normal distribution evaluated at y^ as defined in (2.2.5); and Q^ is the probability of not recognizing 
the correct alternative to a multiple-choice item g as provided by (2.2.3). The values for p{Zg,0), y^, (/)(y^), 
Q^, and jjiiZ^ | u'g = 0) remain invariant under a linear transformation on the scale of the variable of ability. 

Example 3.2.10. As in the instance of Example 3.2.9, it is considered desirable to obtain 
ability estimates that at the termination of testing will have a mean of 100 and a standard deviation 
of 20. These respective values can be obtained by terminating the tests for all individuals at a 
level of precision comparable to that achieved with a test reliability of .90 and prescribing the 
mean of ability, /u,(0*), as 100, and the variance of ability, cr(0*), as 444.4444, or the standard 
deviation of ability, o{e*), as 21.0819. 

For this situation, p(Z^,,0), y^, and </>(yj,) were found to be .86, 1.00, and .2420, re- 
spectively, in Example 3.2.9. Since y^, is invariant under a linear transformation of the continuous 
variable of ability, so must Q^, as determined by (2.2.3), be invariant. The unconditional prob- 
ability of not recognizing the correct alternative to multiple-choice item g, Q^, was found to be 
.8413 in Example 3.2.2. The mean of Z^ given an incorrect answer to multiple-choice item g, 
pi(Zg I u'g = 0), or, identically, /x(Z^, | u^ = 0), is also invariant under a linear transformation on 
the scale of the continuous variable of ability. This invariance necessarily follows because (piyg) 
and Q^ in (3.2.4) and (2.2.6) are invariant under such a transformation. In Example 3.2.4, 
^i(Zj, I u'g = 0), or, identically, /LI(Z^ | U^ = 0), was determined to be — .2877. 

The least squares estimator, /LA(0* | U'^ = 0), can now be evaluated through the use of 
(3.2.16). In this situation for this multiple-choice item g, it is known that /u,(0*) is 100, p(Zg,0) 
is .86, ai0*) is 21.0819, and /x(Z, | u'^ = 0) is -.2877. When ^i(0* | u'^ = 0) of (3.2.1(5) is 
evaluated given these values, the least squares estimator of ability given an incorrect answer to 
multiple-choice item g is found to be 94.7839. The value 94.7839 represents the mean of the 
distribution portrayed in Figure 3.2.2 after a linear transformation of 0 into 0*. Pictorially, this 
linear transformation can be effected by merely changing the values along the abscissa from — 3.0 
to 36.7543, from 0 to 100, and from -1-3.0 to 163.2457. With this transformation on the scale 
of ability, the distribution of 0* given an incorrect answer or u'^ equal to zero is analogous to the 
distribution of ability after incidental rejection on 0* resulting from explicit rejection on an 
observed continuous variable Z^ where y^, is the cut score below which rejection occurs at random 
at a rate (I — c^). This rate is random because the depletion of the subpopulation through lucky 
guessing at a rate c^ is under this submodel assumed to be random. 
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The developments illustrated in Sections 2.2 and 3.2 provide the basis for the estimation of an individual's 
ability given the correctness or incorrectness of the individual's answer to a free-response or multiple-choice 
item. In tailored testing with one of these types of items, interest will focus on a sequence of such estimations 
based on items that have been chosen as most appropriate for that individual. The sequence is terminated when 
the last estimate of ability is sufficiently precise. 

In Chapter 5 the illustrated developments of Sections 2.2 and 3.2 will be extended to provide the basic 
algorithms for the tailored testing of individuals with either free-response or multiple-choice items. But before 
this extension takes place, a more complete introduction to the process of tailored testing is in order. Such an 
introduction is provided in Chapter 4. 

3.3. Mathematical Proofs 

The mathematical formulation that is derived in this section was presented and numerically illustrated in 
Section 3.2. The mathematical proofs of this formulation as contained in this section may be omitted by the 
reader who is seeking a general understanding. The omission of this section will not result in a loss of continuity. 

In earlier discussion it was noted that the bivariate normal distribution could be viewed as consisting of 
infinitely many conditional distributions of Z^ given Q, or as consisting of infinitely many conditional distributions 
of Q given ^^. After standardization, these conditional distributions were defined as the Z^{Q) and the Q{1, ), 
respectively. The standardized conditional distributions of Z^ given Q have been discussed in considerable detail 
with respect to their relationship with the item characteristic curve of the three-parameter normal ogive submodel. 
An illustration was provided in abbreviated fashion in Figure 3.1.1. The analogous illustration for the conditional 
distributions of Q given C,^ is provided in Figure 3.3.1. In this figure, the following features are important. The 
projection of the point of dichotomization, y^,, across the bivariate normal distribution runs parallel to the 
distributions of 0(f^,)- Above the point of dichotomization, y^, these distributions remain intact as represented 
by the shaded area indicating a correct answer to item g,u\ = 1. Below the point of dichotomization, y , a 
proportion q, that is random with respect to the subpopulations in the 0(^^) also obtains a correct score. 

li   = 1 (Shaded Area 

"„ =0 (Unshaded Area) 

Figure 3.3.1.  Hypothetical relations among the item continuum Z^, the binary multiple-choice item U'^, the 
conditional distributions of O given ^^,, and the latent trait O. 
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u'^ = 1, in this case through guessing correctly. This condition is also represented by the shaded area in the 
conditional distribution of 0{C) located below y^. Also below the point of dichotomization, y^, the remaining 
proportion of this subpopulation, that is (I - c\), obtains an incorrect answer to item g, u'^ = 0, in this case 
through guessing incorrectly. This condition is represented by the unshaded area in the conditional distribution 
of 0(C) located below the point of dichotomization, y^. Because successful guessing is assumed random on the 
interval of Z^ from negative infinity to y^^^, it is by extension assumed random with respect to the conditional 
distributions located below the point of dichotomization, y^. Thus the means and variances of the conditional 
distributions of 0(4) are invariant under the imposition of the further condition as to whether item g was answered 
correctly or incorrectly. These relationships become important when selection theory is considered in Chapter 
5. These relationships can be sharply contrasted with those presented in Figure 3.1.1, where the binary scoring 
of item g involves a bisection of the conditional distributions of Z^( 6) which, along with considerations of success 
due to guessing, gives rise to the item characteristic curve as depicted in Figure 3.1.2. 

Similarities between the two- and three-parameter normal ogive submodels have often been noted. These 
similarities will facilitate the developments within this section. Consequently, the present developments will 
frequently refer to those of Section 2.3 for the two-parameter normal ogive submodel. Several convenient 
expressions will be derived in the present section. Again, the point of departure for these derivations will be the 
defining relationships within the bivariate normal distribution. For the initial stage of derivation, the reader may 
find Figure 2.3.2 helpful in visualizing the particular defining relationship that serves as the basis for the derivation. 
During this process, the reader should keep in mind the role of guessing as delineated for this submodel. 

The Unconditional Probabilities for the Realizations of U'g 

The binary random variable U'^ can realize one of two possible values, either a one, or a zero, indicating 
a correct or an incorrect answer, respectively, to a multiple-choice item g. Expressions will now be derived for 
the probabilities of these two possible outcomes. 

The Probability of a Correct Answer to Item g. PT(U'^ = 1). This probability is commonly referred to as 
the p-value for item g. It is designated as merely P'^. By definition it is then known that 

P, = Pr(«; =  I) = Pr(Z,, 3= y^) + c, Pr(Z,, < y,) 

= J^ J_^ ct>{c,,e) dedc, + c, J_''^ J_^ ci^z,,6) dod-^^, (3.3.i) 

where substitutions from (2.3.26) and (2.3.32) provide > 

P', = P, + c^Q^. (3.3.2) 

Upon noting that Q^ is the complement of P^, one may write 

"      n = P, + ^.(1 - P,) (3.3.3) 

which simplifies to ' 

n = c, + il - c^)P^. (3.3.4) 

Substitutions from (2.3.31) into (3.3.4) now provide the result 

P; = c, + (1 - c,)       (277)--' exp(-.5 (2) dC, 

y. 
= c, + (I - c,) J _^ (277)- -^ exp( - .5 ^) dC, 

= c, + (I - c^)<P\-y^], (3.3.5) 

where <!'[*] is by definition the cumulative normal distribution function. The equality of integrals in (3.3.5) is 
due, again, to the symmetry of the normal distribution. The probability of a correct answer to item g, P',, is 
pictorially represented by the shaded area in the marginal distribution of Z^ in Figure 3.1.1. 

The Probability of an Incorrect Answer to Item g, Pr(u'^ = 0). As will become evident, this probability 
is the complement of P^ or (1 - P'^), because the area in the standard normal distribution is unity. This probability 
is designated as Q'^. 
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By definition, it is known that 

G; = Pr(M; = 0) = (1 - c,) Pr(Z, < y^) 

' ' '     = (1 - c^) j^J_^4>ii,,e)dedi^, 

where a substitution from (2.3.32) yields 

e; = (1 - c,)Q,. 

Substitutions from (2.3.35) into (3.3.7) now provide 

e; = (1 - c,) (277)--^ exp(-.5 e,) di, = (\ - q,) 0[y^], 

(3.3.6) 

(3.3.7) 

(3.3.8) 

where 0[*] has previously been defined. The probability of an incorrect answer to item g is portrayed in Figure 
3.1.1 as the unshaded area in the marginal distribution of Zg. 

In order to ascertain that the unconditional probabilities P'^ and Q'^ are indeed complementary, it must be 
proved that 

p; + e;=i. 

Substitutions from (3.3.2) and (3.3.7) into (3.3.9) directly yield 

p, + e, = 1 

(3.3.9) 

(3.3.10) 

in verification of (3.3.9), because P^ as given in (2.3.31) and Q^ as given in (2.3.35) were found to be 
complementary probabilities accounting for the total area in the standard normal distribution where this total 
area is unity. The complementary relationship between P'^, as represented by the shaded area, and Q' as represented 
by the unshaded area, is also pictorially displayed with respect to the normal distribution of Z^ in Figure 3.1.1. 

The Conditional Means of Zg Given the Realizations of U'g 

The mean of Z^, can realize only one of two possible values, contingent upon whether item g was answered 
correctly or incorrectly. Expressions will now be derived for these means or expected values for the two possible 
outcomes. 

The Mean of Zg Given a Correct Answer to Item g, iJ-(Zg \ u'g =  I).  This mean is given by 

fi(Zg I M; = 1) = %{Zg I u'g = 1) 

Cg V(i,,0) de dCg + Cg \^^ J_^ 4 V(^g,0) d6 d(g, (3.3.11) 

where <})*'{^g,6), the joint density function for the particular composite of probability integrals, is provided by 

c/)*'(4,0) = ^^. (3.3.12) n 
In order to verify that (3.3.12) is indeed the joint density function for the composite of probability integrals, it 
is essential to show that the particular composite 

<i>*'{Cg,e)dedCg + Cg 4>*'{L,0)dedL 

equals unity. After a substitution from (3.3.12) into (3.3.13), one may write 

P' 

f\ 
ct>iCg,e) de dCg + Cgj^^ j._^ (j>(^g,e) de dc, 

where substitutions from (2.3.26) and (2.3.32) yield 

1 
V (p^ + ^. e,). 

(3.3.13) 

(3.3.14) 

(3.3.15) 
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The substitution of (3.3.2) into (3.3.15) now provides 

P' 

P' 
(3.3.16) 

in verification of (3.3.12) as the joint density function, because (3.3.16) is obviously equal to unity. 
After a substitution from (3.3.12) into (3.3.11), one may write 

IxiZ^ !«;=!) = %{Z^ I w; = I) 
1 

PI 
i^<\,{L,0)dedL + c- C, <j}{Cg,B) de dc, 

where (2.3.40) and (2.3.53) can be rearranged to yield 

M(2J«, =  ^)Pg = 

and 

fi(Zg \ u^ = 0) Qg = 

Cg (i>(C,,6) dd dC, 

L ct>{L,e) de dL, 

(3.3.17) 

(3.3.18) 

(3.3.19) 

respectively, for substitution into (3.3.17). After these substitutions are made, the composited mean may be 
expressed as 

lx(Z^ I u'^ =  1) ^J.(Z^ I Ug = 1) 
P: 

M(Z, I«, = 0), (3.3.20) 

where the bracketed weights sum to unity because of (3.3.2) and provide the relative frequencies for the means 
resulting from the dichotomization of Z^. These means, of course, are identically those for Z^ in the two- 
parameter normal ogive submodel. Substitutions from (2.3.48) and (2.3.59) into (3.3.20) now provide the desired 
result 

/x(Z I M' = 1) = (1  - c. 
g'    pi 

' g 

(3.3.21) 

as a convenient expression for the mean of Z^ given a correct answer to a multiple-choice item g. 
The Mean of Z^ Given an Incorrect Answer to Item g, fi{Zg \ u'g = 0). This mean is given by 

: iJ,iz^ I „; = 0) = %(,Zg IM,; = 0) ^       • ■■ 
r-y       rx ■ ■ 

= (1 - q.)J_J_4<^"(4,e)^0^^,, (3.3.22) 

where 0^'(^^,0), the joint density function for the probability integral, is given by 

<t>"(L,6) 
Q'g 

(3.3.23) 

In order to ascertain that (3.3.23) represents the joint density function for the probability integral, one needs to 
prove that the particular probability integral 

(3.3.24) (1 -c-,)| J _^^''{C„e)dedc, 

equals unity. After a substitution from (3,3.23) into (3.3.24), one may write 

-    (1 - c-) p^ r 

where a substitution from (2.3.32) allows the writing of 

(3.3.25) 

(3.3.26) 
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The further substitution from (3.3.7) into (3.3.26) now provides 

in verification of (3.3.23), because (3.3.27) is obviously equal to unity. 
The substitution of (3.3.23) into (3.3.22) allows one to write 

fiiZg I «; = 0) = %iZg I «; = 0) 

(3.3.27) 

(1 - cJ y. 

Q' ^J„J_^.'A(4.e)^^^^.. (3.3.28) 
where a substitution from (3.3.19) yields 

M(2, I «; = 0) = %iZ^ I M; = 0) (3.3.29) 

=  -f ^ M(2;, I u, = 0). 

A substitution from (3.3.7) into (3.3.29) now produces 

IJL(Z^ I «; = 0) = ix(Zg I u^ = 0), (3.3.30) 

illustrating that the mean of Z^ given an incorrect answer to item g is identically defined for the two- and three- 
parameter normal ogive submodels as designed for free-response and multiple-choice items, respectively. A 
substitution from (2.3.59) into (3.3.30) provides the desired result: 

,   M2j«'g = 0) =  - ^ (3.3.31) 

as a convenient expression for the mean of Z^ given an incorrect answer to a multiple-choice item g. 

The Conditional Variances of Zg Given the Realizations of U'g 

The variance of Z^ can assume only one of two possible values depending on whether item g was answered 
correctly or incorrectly. Expressions will now be derived for these variances given the two possible outcomes. 

The Variance of Z^ Given a Correct Answer to Item g, cr^(Z^ I "s ~ ')■ ^" order to solve for the variance 
of Z^ given a correct answer to item g, one first obtains an expression for %(Z^ \ «^, = 1). This quantity represents 
the expected value for the sum of squared deviations from a mean that was appropriate before the truncation of 
Zg at yg. One later obtains an expression for the desired variance, o^Z^ \ u'^ = 1), or the expected value of the 
sum of squared deviations about /LI(Z^, | M(, = 1) as given in (3.3.21) through 

a^iZg I«; = 1) = <g(4 !«;=!)- ^\Zg I«; = i), (3.3.32) 

which provides an explicit solution for cr^iZ^ \ u'^ = 1) given the identity 

%iZl !«;=!) = C7^(z, I«; = 1) + ixHz^ \«; = i). (3.3.33) 

Proceeding with the solution for ^(Z^ I "^ = 1)> it is known by definition that 

%iZl I«; = 1) = I |_^ f2 </,*'(^^,0) dd dCg + c, j'^^ J_^ il (t>*'iC,,e) de dc^,      (3.3.34) 

where <t>*'(^g,0) is given by (3.3.12) and verified as the joint density function in the discussion surrounding 
(3.3.16). After a substitution from (3.3.12) into (3.3.34) one may write 

%(Z^g !«;=!) = 
^g L' 's 

(3.3.35) 

where (2.3.63) and (2.3.86) may be rearranged to yield 

%(Zl\ug= \)P^=  \   f     il <Klg,e) dedCg ' (3.3.36) 
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and 

%{Zl I «, = 0) 2, = e, <KC,,e) de dc,. (3.3.37) 

respectively, for substitution into (3.3.35). After these substitutions are made, the composited expected value 
may be expressed as 

%{Zi u; = 1) %(r-1 u, = 1) + 1(2^ I «, = 0), (3.3.38) 

where the bracketed weights sum to unity because of (3.3.2) and provide the relative frequencies for the appropriate 
expected values that result from the dichotomization of Z^. These expected values, of course, are identically 
those for the two-parameter normal ogive submodel. Substitutions from (2.3.81) and (2.3.95) into (3.3.38) 
provide 

^(^ I«;. = 1) = 
y, 0(y,) 

PI 

which simplifies to 

or, merely, 

nz", I«; = I) = P_^JL£^ ^ ,, _ „, y, <i>iy,) 

n + (1  - c,) 
P' 

%(Zi\u'   =   1)   =   1   +   (1   -   r) 
PL    ' 

(3.3.39) 

(3.3.40) 

(3.3.41) 

because of (3.3.2). Substitutions from (3.3.41) and from the squared result of (3.3.21) into (3.3.32), after some 
rearrangement, provide the desired result 

o^iZ^ I wl = 1) = 1 - 
(1  - C-) </,(x.) 

P' 
(1  - ^.) </<T.) 

y. (3.3.42) 

as a convenient expression for the variance of Z^ given a correct answer to a multiple-choice item g. 
The Variance of Z^ Given an Incorrect Answer to Item g, cr^iZ^ \ u'^ = 0). In order to solve for the 

variance of Z^ given an incorrect answer to a multiple-choice item g, cr^iZ^ \ u'^ = 0), one first obtains an 
expression for %(Z^g \ u'^ = 0). This quantity represents the expected value for the sum of squared deviations 
from a mean that was appropriate before the truncation of Z^ at y^. One later obtains an expression for the 
desired variance, a^(Z^ \ u'^ = 0), or the expected value of the sum of squared deviations about 
fiiZ^ I u'g = 0) as given in (3.3.31) through 

o^(Z^ i«;, = 0) = 'g(4 I«; = 0) - /x2(z, |«; = o), 

which provides an explicit solution for o^(Z^ \ u'g = 0) given the identity 

"ig(Z^ I«; = 0) = aHZg I«; = 0) + fi\z^ |«; = o). 

Proceeding with the solution for %{Z^ | «^ = 0), it is known by definition that 

^(^ I «; = 0) = (1 - c,) 
yz   J —yz 

e,(i>"(C,,e)ddd^g, 

(3.3.43) 

(3.3.44) 

(3.3.45) 

where 4>^'{^g,e) is given by (3.3.23) and verified as the joint density function for this particular probability 
integral in the discussion surrounding (3.3.27). A substitution from (3.3.23) into (3.3.45) allows one to write 

%{Zi I «' = 0) = ^- -^ 
e; (I 4>{^g,e) dd dc,. (3.3.46) 

where a substitution from (3.3.37) yields 
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KZl I «, 0) 
(I - q.)g,. 

1(4  I  M,, 0) 

or, merely 

^(2^ I < = 0) = 1(4 I u^ = 0). 

(3.3.47) 

(3.3.48) 

because of (3.3.7). Thus, the particular expected values given in (3.3.48) are identically defined for the two- 
and three-parameter normal ogive submodels. A substitution from (2.3.95) into (3.3.48) now yields 

1(41«; = 0) y, </'(7,) 
(3.3.49) 

Final substitutions from (3.3.49) and from the squared result of (3.3.31) into (3.3.43), along with some rear- 
rangement, now provide the desired result 

(T^Z^ I < = 0) y. (3.3.50) 

as a convenient expression for the variance of Z^ given an incorrect answer to a multiple-choice item g. Upon 
comparing (3.3.50) with (2.3.96), it may be noted that the variance of Z^ given an incorrect answer to item g 
is identically defined for the two- and three-parameter normal ogive submodels. 

The expressions for the variances as provided in (3.3.42) and (3.3.50) will have further use in later 
derivations in Chapter 5. Specifically, these equations will provide inputs for the derivations of the restricted 
variances of ability given the realizations of the binary variable U'^. 

The Least Squares Estimators of Ability Given tiie Realizations of UL 

Since the mean is the point about which the sum of squared deviations is minimized, least squares 
estimators of ability for the possible realizations of the binary variable U'^ are readily obtained. 

(a) Specific Case. For the specific case where O has a mean of zero and a variance of unity, these 
estimators are merely the means of O given the two possible outcomes: the mean of O given a correct answer 
to a multiple-choice item ^, ju,(0 | M^ = 1), and the mean of O given an incorrect answer to a multiple-choice 
item g, /j.(0 I M(, = 0). These least squares estimators of ability will now be derived for the specific case. 

Specific Case: The Mean of 0 Given a Correct Answer to Item g, /J.(0 | u'^ — 1). In order to obtain a 
convenient expression for the mean of O given a correct answer to a multiple-choice item g, one must evaluate 
the defining relationship 

fjL{e\ M; = 1) = %{0\«; = i) (3.3.51) 

er'ii,,0)ded^^ + c. 
— Ol    J   — X 

0<j>*'{L,6)dedL, 

where (j)"(^^,9) is given by (3.3.12) and verified as the joint density function in the discussion surrounding 
(3.3.16). A substitution from (3.3.12) into (3.3.51) allows the writing of 

/i,(6?| u'^ I) 1(0 I u'g = 1) 

1 
e (b(C,,e) dO dC, + q. 

— y^J—vz 
e ii>Ug,e) de dc, 

For subsequent substitution into (3.3.52), (2.3.98) and (2.3.110) may be rearranged to yield 

11(0 I M, =   1) P, 9 c^(C,,e) de dc, 

(3.3.52) 

(3.3.53) 

and 

ix{e I M, = 0) e. 
zc   J ~ X 

e (f>{C,,e) cie dCg (3.3.54) 
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respectively. After these substitutions are made, one may express the composited mean 

ix(0 I «; = 1) = ix(e\ «,, =  I) + 
<--A 

/x(e I«, = 0), (3.3.55) 

resulting from the weighting of means. As can be deduced from (3.3.2), the bracketed weights that form the 
composite in (3.3.55) sum to unity. These weights thus represent the relative frequencies for the means that 
resulted from the dichotomization of Z^, at y^. These means, of course, are identically those defined for the two- 
parameter normal ogive submodel. 

Substitutions from (2.3.107) and (2.3.115) into (3.3.55), along with some rearrangement, allow the 
writing of 

^x{Z^ I u^ = 1) M(e I«; = 1) = p(z,,0) 
L^; p' 

t^(ZAu   = 0)   , 

where a substitution from (3.3.20) provides 

M(e i",; = 1) = p(Z^,e) fji(Z^ 1 < = 1). 

A final substitution from (3.3.21) into (3.3.57) yields the desired result 

M(e|M; = 1) = p(Z,„0)(l - q,) 0(y,) 
P: 

(3.3.56) 

(3.3.57) 

(3.3.58) 

as a convenient expression for the least squares estimator of 0 given a correct answer to a multiple-choice 
item g. 

Specific Case: The Mean of O Given an Incorrect Answer to Item g, ix(0 \ u'^ = 0). In order to obtain 
an expression for the mean of 0 given an incorrect answer to a multiple-choice item g, one must evaluate the 
defining relationship 

M0|«; = 0) = %(0\ u'g = 0) 

(1  - c- e 4,'{L,e) dd dL (3.3.59) 

where (t>^'{^g,e) is given by (3.3.23) and verified as the joint density function in the discussion surrounding 
(3.3.27). A substitution from (3.3.23) into (3.3.59) allows one to write 

fM(0\ «; = 0) = %{0\ M; = 0) 

(1 - cJ C^- 

where a substitution from (3.3.54) yields 

ix(0 I M; = 0) (1 sAQ^ 
e; 

6 4>(L,e) de dL, 

yi(0 I u, = 0) 

or, merely 

/x(0| u'  = 0) = ix(0\ M„ = 0) 

(3.3.60) 

(3.3.61) 

(3.3.62) 

because of (3.3.7). Thus the least squares estimator of 0 given an incorrect answer to item g is identically 
defined in the submodels designed for free-response and multiple-choice items. This finding, of course, results 
from the assumption that success due to guessing is random on the interval of Z^ from negative infinity to y . 
After a substitution from (2.3.115) into (3.3.62) one has 

M(0 i <, = 0) = piZ^,0) fjL{Z^ I u^ = 0), 

where a final substitution from (2.3.59) yields the desired result 

c/>(y,) fii01«; = 0) P(Z,,0) 
Q. 

(3.3.63) 

(3.3.64) 

as a convenient expression for the least squares estimator of 0 given an incorrect answer to a multiple-choice 
item g. 
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General Case. As mentioned earlier, the general case allows the examiner to prescribe the scale of ability 
or the mean and variance of O*, /u,(0*), and a^{6*). Under this case O may be viewed as resulting from the 
standardization of 0*. This relationship was given in (2.3.117). An explicit solution for 6* was given in (2.3.118). 
It was also mentioned that the general case subsumed the specific case of least squares estimators when /x(0*) 
was prescribed as zero and o^(0*) was prescribed as unity. Further it was noted that the item parameters a 
and b^ of (2.1.12) and (2.1.13), respectively, are not appropriate for the general case—the sole exception being 
the subsumed case. The appropriate parameters, a* and b* were defined in (2.3.119) and in (2.3.120), respec- 
tively. These parameters are still appropriate for a multiple-choice item g or the three-parameter normal ogive 
submodel given the general case. In the instance of the third parameter, c*, one merely has 

c| = c,, (3.3.65) 

where c* represents the lower asymptote of the regression of a multiple-choice item ^ on O*. These item 
parameters guarantee that the probability of obtaining a correct answer to a multiple-choice item g remains 
invariant under arbitrary prescriptions for the scale of ability, that is, the mean and variance of 0*, /J.(0*), and 
a^{6*). Convenient expressions for p{Z^,0) given a* and y^ given a* and fc| were provided earlier in (2.3.126) 
and (2.3.128), respectively. 

For the general case, the least squares estimators of ability are merely the means of 0* given the two 
possible outcomes; the mean of O* given a correct answer to a multiple choice item g, fiiO | u'^ = 1), and the 
mean of O* given an incorrect answer to a multiple-choice item g, ix{0* \ u'^ = 0). Estimators of ability for 
this general case will now be derived. 

General Case: The Mean of O* Given a Correct Answer to Item ^, /u.(0* | M^ = 1). In order to obtain 
an expression for the mean of O* given a correct answer to a multiple-choice item g, one must evaluate the 
defining relationship 

ju(0* \u' = \)= %(e* < = 1) 

0* ct>*'{Cg,e)dedc, e* <t>*'{C,M cie dc,,     (3.3.66) 

where 4>*'{^g,0) is given by (3.3.12), verified as the joint density function in the discussion surrounding (3.3.16), 
and still appropriate here because of (2.3.117) and (2.3.118). A substitution from (3.3.12) into (3.3.66) allows 
the writing of . , . 

M(©* |«; = 1) = %(e*I«: = 1) 

where (2.3.130) and (2.3.141) may be rearranged to yield 

fxiO* I M, = 1) P^ = J   1^ 9* (/)(4,0) de dC, 

and 

(3.3.67) 

(3.3.68) 

M(0* I «, = 0) Q^ e* (t>{L,e) de dL, (3.3.69) 

respectively, for substitution into (3.3.67). After these substitutions are made, one may express the composited 
mean 

IxiO* 1) 
PI 

/X(0*   I  M,   =    I) 
'^A 
n j 

M(0* 0), (3.3.70) 

resulting from a weighting of means. As can be deduced from (3.3.2), the bracketed weights that form the 
composite sum to unity. These weights thus represent the relative frequencies for the means that resulted from 
the dichotomization of Z^ at y^. These weighted means, of course, are identically those defined for the two- 
parameter normal ogive submodel. 

Substitutions from (2.3.138) and (2.3.146) into (3.3.70), along with some rearrangement, allow one to 
write 
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M0* I«; = 1) 
P: 

[txiO^) + p(Z^,0) <j{0*) M(4 I u^ = 1)] 

L n 
Because of (3.3.2) one may write 

/x(0* I <, = 1) = ix(0^-) + p(Z^,e) o-(©*) 

[M(0*) + P(2;,e) cr(0*) At(Z, I ", = 0)]. (3.3.71) 

/X(Z^,  I  M^,   =    1)   + /u,(2, I ",, = 0)        (3.3.72) 

where a substitution from (3.3.20) into (3.3.72) provides 

M0* I M; = 1) = M0*) + P(2,,e) CT(0*) ^{Z^ I M; =  1). 

A final substitution from (3.3.21) into (3.3.73) yields the desired result 

c/'(T,) 
At(0* I",; = 1) = M(0*) + p{z,,e) (r(e*)(i - q,) n 

(3.3.73) 

(3.3.74) 

as a convenient expression for the least squares estimator of ability, 0*, given a correct answer to a multiple- 
choice item g. 

General Case: The Mean of O* Given an Incorrect Answer to Item g, )x{0* \ u'^ = 0). In order to obtain 
an expression for the mean of O* given an incorrect answer to a multiple-choice item g, fx{0* \ u'^ = 0), one 
must evaluate the defining relationship 

Ai(0* 1«; = 0) = %(e* \u' = 0) 

= (1 - q-) e* (P"{ig,e)dedCg, (3.3.75) 

where 4>"{l,g,d) is given by (3.3.23), verified as the joint density function in the discussion surrounding (3.3.27), 
and still appropriate because of (2.3.117) and (2.3.118). A substitution from (3.3.23) into (3.3.75) allows the 
writing of 

Ai(0* I M; = 0) = %{e* I M; = o) 

(1 - ^.) (y. 

e; e* (t>{{g,e) dedc,, 

where a substitution from (3.3.69) yields 

M(0* I«; = 0) = 
(1 - C-) G, 

e; ^ iu,(e* I M„ = 0) 

or, merely 

/j.(0* I«; = 0) = fjiio* IM, = 0), 

(3.3.76) 

(3.3.77) 

(3.3.78) 

because of (3.3.7). Thus the least squares estimator of O* given an incorrect answer to item g is identically 
defined for the submodels designed for the free-response and multiple-choice cases. The finding, of course, is 
a result of the assumption that success due to guessing in the case of the three-parameter normal ogive submodel 
is assumed to occur at random on the interval of Z^ from negative infinity to y^. After a substitution from 
(2.3.146) into (3.3.78), one has 

/x(0* I «; = 0) = fj.(0*) + p{Z^,0) ai0*) ix(Zg I u^ = 0), 

where a final substitution from (2.3.59) into (3.3.79) yields the desired result 

M(0* I M; = 0) = M(0*) - P(2„,e) aiO*) 
^(y,) 

Q. 

(3.3.79) 

(3.3.80) 

as a convenient expression for the least squares estimator of O* given an incorrect answer to a multiple-choice 
item g. 
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The expressions for the least squares estimators provided by (3.3.73), (3.3.74), (3.3.79), and (3.3.80) 
will have further use in later derivations in Chapter 5. Notice that the estimators provided by (3.3.58) and 
(3.3.64) may be viewed as resulting from (3.3.74) and (3.3.80), respectively, under the simplifying assumption 
that ti(0*) is zero and a^iO*) is unity. In Chapters 5 and 6, the primary concern will be with estimation under 
the general case, in particular, the sequential estimation of O* given the items that are chosen to constitute a 
tailored test. Algorithms will be developed for tailored testing with both free-response and multiple-choice items. 
But before these developments occur, a general discussion of the tailored testing process is in order. 
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4. THE TAILORED TESTING PROCESS 
In the preceding two chapters, two normal ogive submodels were derived from the model for a single 

common factor. These submodels form the mathematical basis for the process of tailored testing in those particular 
instances where the basic assumptions are reasonable for an adequate number of items. The two-parameter 
submodel should be selected as the basis for this process when a sufficient supply of free-response items that 
are scored as either correct or incorrect is available. When a sufficient supply of multiple-choice items that are 
scored as either correct or incorrect is available, the three-parameter submodel should be selected as the basis 
for this process. In the following two chapters, tailoring algorithms for each of these submodels will be derived 
with the aid of selection theory. These algorithms will represent the explicit mathematical statements basic to 
the tailoring process. In the present chapter, however, concern will focus on the less specific: Informal tests of 
the basic assumptions or the validity of these submodels will be discussed; the requirements of the tailoring 
process will be delineated; and the tailoring of an individual test will be described. 

4.1  The Validity or Adequacy of Fit of the Normal Ogive Submodels 

In assessing the validity of submodels such as these, interest centers on determining the extent of agreement 
between the particular submodel and the observed data. The extent of agreement should be adequate. For instance, 
it can usually be assumed that given large enough samples such submodels will show some departure from the 
observed data. What is required then is a degree of agreement sufficient to produce useful results upon the 
application of the particular submodel. That is to say, the submodel should have some practical value. Major 
discrepancies between the submodel and observed data would ordinarily be invalidating. Such discrepancies 
should severely limit the usefulness of produced results. On the other hand, the practical implications of minor 
discrepancies might be nonexistent. 

In regard to testing the adequacy of fit of statistical models, Birnbaum (1968) has offered the following 
observations: 

Where specific techniques of testing fit are concerned, the reader should be aware that some 
established approaches to testing goodness of fit have come to be considered unsound and poten- 
tially misleading by a number of statisticians and scientific workers. An alternative perspective 
on testing adequacy of models is one based primarily on rather direct, often graphical, comparisons 
of data with significant aspects of models. Here a crucial role is played by relatively unformalized 
judgments .... (pp. 422-423) 

There are several basic assumptions underlying the submodels that have been developed. The reasona- 
bleness of these basic assumptions should be assessed before a major application of tailored testing is initiated. 
One basic assumption is that of unidimensionality. The items must form a unifactorial or unidimensional set. 
This implies that the item error scores are unique or independent from item to item. As a result, the item 
covariances should vanish when ability is partialled out as indicated in (1.1.14). Another basic assumption, also 
implied in the basic model for a single common factor, is that of local independence. This assumption requires 
that the item covariances vanish when ability is held locally constant as well as when ability is completely 
partialled out. A further basic assumption is that ability is normally distributed in the population of interest. A 
normal distribution of ability is assumed in the model for a single common factor. A final basic assumption is 
that the regressions of the binary items U^ or U'g on ability are two- or three-parameter normal ogives depending 
on item type. As delineated in Chapters 2 and 3, this is a direct consequence of the assumed bivariate normality 
of the Zg and O as well as the determining relationship between the Z^ and the U^ and the Zg and the U'^. 

The Separate Evaluations of Basic Assumptions 

One method of testing the validity of a particular submodel might be to consider its basic assumptions 
as aspects of significance and separately assess the reasonableness of each. While this method might be easily 
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applied in the instance of some basic assumptions, its application to others may be extremely difficult, if not 
impossible, and some practices in assessing the reasonableness of the several basic assumptions have been both 
unsound and misleading. 

Unidimensionality. The usual approach, in assessing whether the assumption of unidimensionality is 
reasonable, is to factor analyze the set of items. If a single common factor provides an adequate description of 
the observed data, that is, if the sample analogue of the matrix X{A,A) of (1.1.14) is essentially diagonal, then 
the assumption is deemed reasonable. This approach appears deceptively straightforward, but it is fraught with 
potential for misapplication. The approach is only appropriate when free-response items are being analyzed. In 
this case, the item intercorrelations must be tetrachoric coefficients. The correlation coefficient of (1.1.21) can 
be estimated by a tetrachoric coefficient, given data from the binary variables Ug of free-response items. If phi 
coefficients are used for this purpose a proliferation of "difficulty" factors can occur even when the state of 
nature is in consonance with the unidimensional assumption. Phi coefficients are influenced by item difficulties. 
When the state of nature is unidimensional, sets of items of similar difficulty can produce a spurious multidi- 
mensionality. The approach should not be used with multiple-choice items even with tetrachoric coefficients. 
The tetrachoric coefficient assumes that the binary variables arising from a score of one if correct and a score 
of zero if incorrect result from the dichotomization of normal random variables such as the Z,. While this 
assumption is reasonable for free-response items, it is clearly unreasonable for any pair of multiple-choice items. 
Under the submodel designed for multiple-choice items, the binary scores of one and zero are not fully determined 
by dichotomizations of the continuous variables Z^. A brief review of Figure 3.1.1 should convince the reader 
of the unreasonableness of this assumption in the multiple-choice case when the three-parameter normal ogive 
submodel has been found to be valid. Given data from binary variables such as the [/^,, the tetrachoric coefficient 
is clearly not an estimate of the correlation coefficient of (1.1.21). A spurious multidimensionality can result 
from the misapplication of factor analysis to multiple-choice items. This improper "tetrachoric coefficient" is 
also influenced by item difficulties. 

In the case of multiple-choice items, the advocated approach is to select items with high values of a 
High values of a^ indicate strong relationships between the items and the particular dimension of ability. Notice 
in (2.2.10) that a^ completely determines p(Z^,0), and that this particular correlation coefficient, in the usual 
factor-analytic parlance, is a factor loading. When the particular dimension of ability has a long and well- 
established factor-analytic pedigree, the values of a^ tend to be rather high. In fact, these values tend to be much 
higher than previously thought. Selecting items with high values of a^ then tends toward a unidimensional set 
for the well-established dimensions of ability. Remember, it is not essential that all items encountered be 
adequately represented by a particular submodel. Adequate representation is only necessary for those items 
selected for use in the tailoring process. In Section 4.2, more will be said about item selection. 

Local Independence. Local independence is a higher order of statistical independence than indicated by 
matrix S(A,A) of (1.1.14), and is a state of nature where the item variance-covariance matrices are diagonal 
matrices for arbitrary values of ability. That is to say, the item covariances vanish when ability is held constant. 
To separately assess the reasonableness of this assumption, therefore, would be extremely difficult if not im- 
possible. In latent trait applications, one is usually limited to finite samples of examinees as well as to estimates 
of ability. A difficult problem, then, is the size of subsamples when the estimate of ability is held constant. 
Another difficult problem is that true ability is not fixed when estimates of ability are held constant. Thus, the 
appropriate variance-covariance matrices for use in assessing the reasonableness of this assumption are usually 
not obtainable in practice. That the sample analogue of the matrix S{A.A) of (1.1.14) be essentially diagonal is 
a necessary condition given the reasonableness of the assumption of local independence. However, this condition 
in and of itself is not sufficient to establish the reasonableness of this basic assumption. 

Normally Distributed Abilit}'. The assumption of normally distributed ability is almost always reasonable. 
In fact, it is difficult to construct tailored tests under the procedures advocated in this report that will be inconsistent 
with this assumption. In Table 5.3.1, for example, data will be presented which indicate that the assumption of 
normality provides a very workable approximation even when the distributions of ability are known to be 
nonnormal. 

If the distributions of ability estimates are examined to assess normality, the nature of the estimates must 
be kept in mind. When ability is estimated by the algorithms of Section 6.2 and 6.3, the estimates are approximate 
least squares or regressed estimates. One should ensure that these estimates can be expected to form a linear 
regression on the Z^. Only under this condition will the form of the distribution of ability estimates reflect that 
of the distribution of true ability. This condition is ensured by terminating each tailored test when the error of 
the ability estimate is at most some constant. Given a constant terminal error, the mean and variance of the 
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distribution of ability estimates can also be predicted. A detailed consideration will be given to the termination 
of tailored tests in Chapter 7. 

Normal Ogive Regressions. Given these submodels, normal ogive regressions of binary items on estimates 
of ability can be expected when the terminal error is held constant for each tailored test. If the distribution of 
estimates of ability departs significantly from the distribution of true ability, these regressions can also depart 
significantly from their true form. In this context, tests of goodness of fit should be considered unsound and 
potentially misleading, for two reasons. Normal ogive regressions are not expected when the distributional forms 
of estimates of ability and true ability depart significantly; and minor discrepancies from assumed regressions 
may have insignificant practical implications. Minor discrepancies are easily detected given large enough samples. 

In order to assess the reasonableness of this basic assumption for a particular submodel, graphs of the 
sample analogues of these regressions can be visually inspected. The conditions under which the true forms of 
these regressions are to be expected should be kept in mind. The graphs for free-response items should be 
represented reasonably well by two-parameter normal ogives; whereas three-parameter normal ogives should 
represent these graphs reasonably well for multiple-choice items. 

The Alternative Perspective 

Another method of testing the validity of a particular submodel is to consider significant aspects of 
practical value. In this case, results of practical importance are predicted. These predictions are derived or inferred 
from the submodel. Thus, they depend on the reasonableness of all of the basic assumptions. The predictions 
are then subjected to disconfirmation using observed data. If the predicted results are obtained, the basic 
assumptions are considered reasonable. If the predicted results are disconfirmed, then the basic assumptions are 
considered unreasonable. Normally, this method is applied only after several of the basic assumptions have been 
assessed as reasonable. 

An example of the application of this method has been reported in the literature (Urry, 1977, pp. 188- 
190). Accepting all of the basic assumptions of the three-parameter submodel as the true state of nature, the 
investigator predicted some eight correlations between distinct measures of the same ability. These predictions 
were for correlations between eight ability estimates resulting from tailored testing to eight different levels of 
reliability and the test score from a written test of known reliability. A pilot study of tailored testing was then 
conducted. In each of the eight cases, the obtained correlation exceeded in numerical value the corresponding 
predicted correlation. As a consequence, it may be concluded that the three-parameter normal ogive submodel, 
given all of its basic assumptions, is valid for use with multiple-choice items. In Chapter 7, the theoretical basis 
for the prediction of these correlations will be derived and discussed. 

Aside from the important implication for validity, a practical implication drawn in the cited literature for 
tailored testing with this submodel was that the levels of predicted reliability could be achieved with dramatic 
reductions in the number of required items vis-a-vis conventional paper-and-pencil testing. The observed reduc- 
tions were of the order of 80 percent. The practical importance of these reductions is principally economic. 
Fewer tailored testing stations, at a given cost, are required to sustain an established testing volume. Given this 
established volume, the amount of use of testing stations, and therefore their number, depends primarily on 
testing time, which bears a direct relationship to test length. 

4.2. Requirements of the Tailored Testing Process 

Given the validity or adequacy of fit of a particular submodel, a successful application of the tailoring 
process depends on (a) accurate estimates of the item parameters and (b) an appropriate selection of items for 
the ability bank. 

Accurate Estimates of the Item Parameters 

In the developments thus far it has been assumed that the item parameters—either a^ and b^ in the case 
of the two-parameter normal ogive submodel or a^, b^, and q, in the case of the three-parameter normal ogive 
submodel—are known. In practice, these parameters need to be estimated. Accuracy in estimating the item 
parameters depends on both the number of items and the number of examinees in the analyzed data sets. If 
applications of tailored testing are anticipated, one should ensure that adequate data are available for this purpose. 
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Algorithms for the estimation of item parameters will be presented in a subsequent report. The basic 
assumptions of these algorithms are identical to those underlying the normal ogive submodels discussed here. 
Simulation techniques will be considered that will allow an evaluation of the accuracy of item parameter estimates. 

Notice that the expressions derived for the submodels in Chapters 2 and 3, as well as those yet to be 
derived, all assume or will assume that the item parameters are known. Predictions drawn from these submodels, 
then, also assume knowledge of the item parameters; and predictions of this type will become an integral part 
of the tailoring process. Thus, accurate estimation or reasonable knowledge of the item parameters is essential. 

An Appropriate Selection of Items for tfie Ability Bank 

The item parameters are usually estimated with ability scaled to a mean of zero and a variance of unity. 
Thus one usually has estimates of a^, b^, and, in the case of the three-parameter normal ogive submodel, c, of 
equations (2.1.12), (2.1.13),and (3.1.17), respectively. Item selection is best made on the basis of these estimates. 
Later, these estimates may be transformed to a*, b*, and, in the case of the three-parameter normal ogive 
submodel, c|, by means of equations (2.2.17), (2.2.18),and (3.2.14), respectively, when a mean and variance 
have been prescribed for the scale of ability. 

In item selection, there are three primary goals: (a) to construct an item bank where the constituent items 
are adequately represented by a particular submodel and consequently measure a single dimension of ability— 
hence the designation ability bank; (b) to obtain constituent items for the ability bank such that their required 
numbers in achieving given levels of reliability through tailored testing is reduced relative to the item requirements 
of conventional paper-and-pencil testing; and (c) to obtain constituent items for the ability bank such that the 
estimates of ability obtained for all examinees can be essentially equiprecise, that is, the error in ability estimation 
at the termination of tailored testing can be essentially constant for all examinees. 

In Section 4.1, several methods of evaluating the adequacy of fit of these submodels to item data were 
discussed. To obtain the first goal in item selection, then, the methods prescribed in that section should be 
applied. The application of the unprescribed methods, that are known to be unsound and potentially misleading, 
should be avoided. 

To obtain the second goal, one needs to select items with high values of a^, and, in the case of the three- 
parameter normal ogive submodel, low values of q,. In both cases, the b^ must be evenly and widely distributed. 

It has been demonstrated (Urry, 1970, 1977) that a minimum value of .8 should be set for the a.. This 
minimum value ensures that tailored testing will be more economical in item usage than conventional testing in 
achieving the same level of reliability. Higher values of a^, improve this economic outlook. When the regressions 
of the binary items on ability are essentially linear, the test score of conventional testing, the number of correct 
items, cannot be improved on in this regard. It is only when these regressions become markedly curvilinear, or 
when a^ exceeds .8 in value, that dramatic reductions in the number of required items can be realized through 
tailored testing. Under the two-parameter normal ogive submodel, the biserial correlation between a free-response 
item and a perfectly reliable conventional test is about .62 when a^ is .8, irrespective of the item's difficulty. 
However, given the three-parameter normal ogive submodel and a^ equal to .8, the biserial correlation between 
a multiple-choice item and a perfectly reliable conventional test varies with the item's difficulty as well as with 
c^, the item's coefficient of guessing. For any nonzero q,, the value of this biserial correlation is less for difficult 
items than for easy items. Since success due to guessing occurs with greater frequency on difficult items than 
on easy items, its masking effect on item discriminatory power as indexed by the biserial correlation is more 
pronounced for difficult items than for easy items. When a^ is .8 and q, is .20, this biserial correlation is about 
.26 for very difficult items and about ,59 for very easy items (Urry, 1976). Since this biserial correlation is also 
attenuated by unreliability in the conventional test, experience with the biserial correlation in conventional item 
analysis should lead one to conclude that obtaining multiple-choice items where a^ is at least .8 is a far easier 
task than is commonly thought. 

High values of c^ have adverse effects on the tailored testing process. The gain per item in precision is 
lessened in sequential ability estimation. Thus, multiple-choice items having more rather than fewer alternatives 
are desirable. As a rule of thumb, a maximum value of .3 is suggested for the c^, where q, is somewhat related 
to, but not fixed by the number of item alternatives. 

The item difficulties, the b^, should be distributed in a fashion that will allow redundant challenge at all 
levels of ability in the population of interest. Redundancy is required in order to obtain equal precision in ability 
estimation for the full range of ability in this population. The distribution of b^, then, should be evenly and 
widely distributed. How evenly and widely distributed depends on the degree of precision or reliability required 
of ability estimates, which brings one to the third goal. 
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Consideration of the third goal requires a clearer definition of reliability in the tailored testing context. 
The process of tailored testing produces as many tests as there are examinees. Each test is tailored to an examinee 
of given ability. In this context, reliability is a property of the estimates of ability resulting from the process. 
In the conventional context of paper-and-pencil testing, reliability is, by way of contrast, a property of a specific 
printed form of the test. 

An index of reliability for the estimates of ability resulting from the tailoring process will be derived in 
Chapter 7. As will be seen, this index represents a binary analogue of the squared multiple correlation. It possesses 
the following similarities to reliability in classical test theory: (a) this index represents the correlation between 
equiprecise estimates of the same ability which is analogous to the correlation between parallel forms in the 
classical setting, and (b) the square root of this index represents the correlation between equiprecise ability 
estimates and true ability, which is analogous to the correlation between test scores and true score. 

The use of this index assumes constant conditional variances of O* given the tailored tests. As mentioned 
earlier, this constancy ensures that the estimates of ability form a linear regression. A linear regression can be 
approximated by terminating each tailored test when the error of the ability estimate is equal to or less than a 
prespecified constant. Given this prespecified constant, a lower bound to this index of reliability can be calculated. 
This calculation is possible because appropriate termination guarantees that the error in ability estimation is at 
most equal to the prespecified constant. As the prespecified constant becomes smaller, or as the achieved 
termination rule becomes more stringent, the error in ability estimation more closely approaches this prespecified 
constant. The smaller the prespecified constant is set, the longer each tailored test must be in order to achieve 
the termination rule; and the change per item in the error of ability estimation decreases with tailored test length. 
Thus the longer the tailored test, the more closely the error in ability estimation approaches the prespecified 
constant. As the expected value of the error in ability estimation, taken over the tailored tests, approaches the 
prespecified constant, tailored test reliability approaches the lower bound to the index of reliability. The lower 
bound to the index of reliability will be discussed in Chapter 7. Its calculation allows a forecast of tailored test 
reliabilities before the process of tailored testing begins. 

There is an important condition. The prespecified constant must be reached at termination in each tailored 
test. Achieving this condition depends on the value of the prespecified constant and on the configuration of item 
parameters in the ability bank. If higher levels of precision or reliability are necessary, closer spacing is required 
between the item difficulties. In turn, this requirement calls for an increase in the number of items in the ability 
bank. In order to determine the performance of the ability bank in regard to achieving desired tailored test 
reliabilities, simulation studies (Urry, 1974, 1976, 1977) should be conducted. For a set of multiple-choice items, 
such simulation studies consist of applying the tailored testing algorithm presented in Section 6.2 for the three- 
parameter normal ogive submodel to binary item data that has been generated from this submodel. The generation 
of binary item data given this submodel will be discussed in Section 11.1. But briefly, in this generation process, 
the estimates of the parameters a^, b^, and c\ for the items in a particular ability bank are used. As a part of 
this process, values of true ability are sampled from the distribution assumed for O. Thus, the values of true 
ability are known. Estimates of ability can then be obtained through tailored testing with the algorithm given 
data for items with the parametric configuration of this particular ability bank and the assumed distribution of 
ability. The estimates of ability obtained under certain termination rules can then be correlated with the known 
values of the ability. Since the squared correlation between the estimates of ability and the known values of 
ability defines tailored test reliability, one can determine how well tailored test reliability is forecasted from the 
termination rules as well as how stringent the termination rule can be made, such that the prespecified constant 
can still be achieved in the tailored testing of individuals with this specific ability bank. Simulation studies such 
as these allow an assessment as to the achievability of tailored test reliabilities given the parametric configuration 
of a specific ability bank. 

Subject to revision through the interpretation of results from simulation studies, it is suggested that item 
difficulties be evenly distributed on the interval from ~2.0 to 2.0, and that the total number of items be 
approximately 100. Given the ability estimation techniques provided in this report, a wider distribution of item 
difficulties and a greater number of items are required when higher levels of reliability, say those in excess of 
.95, are deemed necessary. 

4.3 Tailoring tine Individual Test 

In the present section general features of the tailoring process will be described. In Chapters 5 and 6, 
the formal mathematical statements or basic algorithms for this process will be derived for both the two- and 
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^ 
three-parameter normal ogive submodels. As will be seen later, tailored testing is best implemented as a computer- 
interactive process because of a requirement for extensive mathematical calculation. This requirement will become 
apparent in Chapter 8, where a numerical illustration of an individually tailored test is provided. 

From the perspective of the individual, the tailoring process involves the following: the individual is 
seated in front of a microcomputer. Instructions on the proper use of this equipment are provided on its cathode 
ray tube, or television-like screen. The instructions elicit series of actions. When the elicited actions indicate 
the individual's complete understaq,ding of what this situation requires, the test begins. A test item appears on 
the cathode ray tube, and the individual provides an answer on the typewriter-like keyboard of this microcomputer. 
If the answer given is correct, the next item will be more difficult. If the answer given is not correct, an easier 
item will follow. The process continues in similar fashion until a message on the cathode ray tube indicates that 
testing has been concluded. 

The overall goal of tailored testing is to obtain equally precise estimates of ability. In obtaining this goal, 
the process has a scenario that is constant from individual to individual. The general scenario unfolds as follows: 
An individual known to be a member of the population of interest is to be tested. Given what is known about 
this individual, the least-squares estimate of ability is the mean of ability, /x(0*), and its squared error, the 
variance of ability, is cr(e*). These prior estimates, /xO*) and r(0*), are then used to initiate the following 
iterated sequence: 

1. Given the current estimate of ability and its variance, the most informative item is chosen from the 
ability bank; 

2. This item is presented on the cathode ray tube; 
3. The individual responds by way of the keyboard; 
4. The response is scored; ,     ^     , - 
5. A revised estimate of ability is obtained; 
6. Its variance is estimated; , ; 
7. The square root of this variance, the error of the estimate of ability, is compared to a prespecified 

constant; 
8. If the error of the ability estimate is equal to or less than the prespecified constant, the test is terminated; 
9. Otherwise, the sequence is repeated. 
The sequence is repeated until the condition in Step 8 is satisfied. Satisfaction of Step 8 has important 

implications with respect to the linearity of regression of the ability estimates and the reliability of the tailored 
testing process. The development of the algebraic intricacies in the applications of this general scenario requires 
the further derivation provided in the following two chapters. 

For this later development, it is important to distinguish two necessary systems of item subscription. The 
items in the ability bank are subscripted g, where g = 1, 2,... p. These items are then chosen from the ability 
bank as in Step 1 to form the individualized sequence that becomes the tailored test. Within a tailored test, the 
items chosen from the ability bank are subscripted in sequential order by n, where n = 1,2, ... ^,. In this 
context, qi is the number of repetitions of the iterated sequence for individual ;. The number of items required 
to satisfy Step 8, thus terminating the iterations, can vary with individuals. Variability in tailored test length is 
necessary to insure that the degree of precision imposed by Step 8 is constant across individuals. For instance, 
fewer items are required for individuals of average ability than are required for individuals of high ability to 
achieve termination in Step 8. 
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5.  PRELIMINARY DEVELOPMENTS FOR THE 
TAILORED TESTING ALGORITHMS 

5.1. The Selection or Rejection Analogy 

In this chapter, selection theory is used as a basis for the development of the tailored testing algorithms. 
The relevance of this theory can be established by analogy. In Chapters 2 and 3, the two- and three-parameter 
normal ogive submodels were distinguished from one another on the basis of the hypothetical relationships 
between the continuous random variables Z^ and the binary random variables U^ or U'^. As portrayed in Figure 
2.1.1 and Figure 3.1.1, the Z^, determine the U^ and U'^. The manner of this determination is the characteristic 
distinguishing between these submodels. These hypothetical relationships are now viewed from a selection 
perspective. One should remember that the Z^ are not observed, although as described in Chapters 2 and 3, they 
might be. The observed U^ and U'^, derive from the unobserved Z^. In tailored testing, one might view the 
process as though binary scores, which are the realizations of U^ or U'^, indicate explicit selection on the continuous 
variable Z^. That is to say, binary scoring is analogous to explicit selection or explicit rejection on a specific 
continuous variable Z^. The similarity is not complete because the "cut score", y^, cannot be changed on a 
particular Z^. The approach, then, has to be one of identifying and choosing a particular item g that has a 
desirable "cut score," y^. This feature of the submodels introduces the requirement for a sufficient supply of 
items in order to allow adequate flexibility in choosing the "cut scores," the y,. 

Under the analogy, the correspondence between the binary scoring of an item and explicit selection or 
rejection on the continuous variable Z^ can be delineated as well as illustrated. For the two-parameter submodel, 
the realization u^ equal to one is the analogue of an explicit selection on Z^ of that subpopulation with a free- 
response score, 4,„, equal to or greater than a "cut score," y,. Similarly, the realization u^ equal to zero is the 
analogue of explicit rejection on Z^ of that subpopulation with free-response scores, ^^,,„, less than a "cut score," 
y,. These analogous relationships may be reviewed by consulting the shaded and unshaded areas of Z in Figure 
2.1.1. s b 

Explicit selection and explicit rejection on Z,, as indicated by the realization of U'^ for the three-parameter 
submodel, under the same analogy, are somewhat more complicated. The realization u'^ equal to one is the 
analogue of explicit selection on Z^ of that subpopulation with recognition scores, (^„„, equal to or greater than 
a "cut score," y^, plus a random proportion c^ of that subpopulation with recognition scores, (^„„, less than a 
"cut score," y^. This method of explicit selection is indicated by the shaded area of Z^ as presented in Figure 
3.1.1. Similarly, the realization u'^ equal to zero is the analogue of explicit rejection on Z^ of the remaining 
proportion, (1 - q,), of that subpopulation with recognition scores, ^^„„, less than a "cut score," y^. This 
method of explicit rejection is graphically indicated by the unshaded area of Z^, as presented in Figure's. 1.1. 
These analogous relationships support the relevance of selection theory for further developments. 

It was mentioned earlier that items are sequentially chosen from the ability bank to construct each tailored 
test. In sequence, each choice obtains the most informative, available item g given the current information on 
the individual. From this perspective, a tailored test is analogous to a series of explicit selections and explicit 
rejections indicated by an outcome vector containing the individual's binary scores on the most informative items 
from the ability bank. The mean ability score for the subpopulation that would have been obtained given the 
series of explicit selections and explicit rejections is taken as the estimator of the individual's ability. Under the 
analogy, the variance of this estimator is the restricted variance of ability for the subpopulation that would have 
been obtained by the associated series of incidental selections and incidental rejections on the variable of ability 
as indicated by the outcome vector of binary scores. This variance is the variance of ability given restriction in 
range, the effect of the incidental selections and rejections. In this context, restriction in range is desirable. It 
denotes precision in ability estimation. 

Viewed from the perspective of the analogy, the sequential choice of items produces a series of explicit 
selections and rejections resulting in the identification of a subpopulation that is relatively homogeneous with 
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respect to the variable of ability. That is to say, items are sequentially chosen in order to restrict most severely 
the variance and thus the range of ability associated with a particular outcome vector of binary scores indicating 
explicit selections and rejections on a series of Z„. 

In Section 5.2, a general expression will be developed for the choice of the most informative items from 
the ability bank. It will be established that the chosen items are the most informative items to use in the construction 
of the particular tailored test. In Section 5.3, some important developments are derived from selection theory. 
These developments will provide the needed input for the recursive formulation of the tailoring algorithms to be 
presented in Chapter 6. In Sections 6.2 and 6.3, the tailonng algorithms for the two- and three-parameter normal 
ogive submodels will be summarized from earlier developments, mainly those of Section 5.3. 

In the following discussion, it is assumed that "incidental selection" and "incidental rejection" with 
respect to the variable of ability result in a normal distribution of ability. This assumption represents a very 
workable approximation allowing the sequential estimation of ability and its variance. Sequential estimation 
under this assumption is generally referred to as a restricted updating procedure. 

5.2 The Sequential Choice of Items 

In this context, items are chosen by the tailoring algorithm. Item selection, as discussed in Section 4.2, 
consisted of the choosing of items by the practitioner. This item selection produces an effective ability bank of 
manageable size. Since items are later chosen by the algorithm, one can usually further reduce the size of the 
ability bank. This reduction can be accomplished by eliminating those items never chosen by the algorithm when 
the population of interest is being tested to the required level of reliability. This process of elimination does not 
influence the effectiveness of the ability bank, but renders its size, that is, its number of items, more manageable 
in a microcomputer environment. 

It was mentioned earlier that the goal of tailored testing was to obtain equally precise estimates of ability. 
Within the individually tailored test, the emphasis is on precision. Under the analogy, restriction in the range 
of ability is the corollary of tailored test precision. Thus, the most informative, available item is the one that 
will most restrict the range of ability associated with its estimate, or, synonomously, render the most precise 
estimate of ability. In this context an item is referred to as available when it has not yet been used in the tailoring 
of a test for the particular individual. Once the designated level of precision has been achieved, the tailored test 
is terminated. Equality of precision is then enforced through the appropriate termination of the tailored tests for 
all individuals. 

in constructmg the sequence of items for a tailored test, each item is chosen on the basis of the expectation 
that the individual's answer to that particular item will restrict the variance of ability for the associated estimate 
more than will the individual's answer to any other available item in the ability bank. Thus, an expected value 
for the variance of ability is involved. In determining the most informative, available item, this expected value 
is evaluated for each of the available items. One seeks the item with the minimum value because it is desired 
to restrict this variance most severely given a sequence of available items. Alternatively, one might state that it 
is desired to arrive at the designated level of precision with the sequence that consists of as few items as possible 
given those available. The cumulative effect across all tailored tests is that this method of choosing items is 
expected to achieve the designated level of reliability for the "scores" obtained from the tailoring process with 
as few items as possible given the particular ability bank. 

One begins by choosing the first item. It is known that the individual being tested is a member of the 
population of interest. One's estimate of this individual's ability is, then, /LI(0*), and the variance of this estimate 
is, then, a^(0*). One knows the item parameters a* and b*, in the two-parameter case, or a*, b*, andc*, in 
the three-parameter case. A formula for the expected value of the variance of ability is now needed which 
anticipates the probable outcomes of the encounter between this individual and each item g in the ability bank. 
For convenience in exposition, this expected value will be generalized with respect to the submodels. The 
statistical rationale basic to choosing the item is shared by both submodels. In the following section, submodel 
specificity will be provided in the form of computationally convenient identities of this generalized expected 
value. The purpose in this subsection is to provide the common statistical rationale in explicit form. 

Let U* be designated as a generalized binary random variable denoting either U^ or U'^, depending on the 
submodel context. The generalized expected value for the choice of the first item, then, is 

%ui <^\0* I U*) = Pr(«f =  1) 0-2(0* I M| =  1) -h Pr(M* = 0) a\e* | M* = 0) (5.2.1) 

where Pr(w* =  1) and Pr(M*  = 0) are merely the respective probabilities of a correct and incorrect answer to ~s 
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item g given wiiat is currently known about this individual, and cr-(0* | ;/* = 1) or a^(9* | «* = Q) is the 
variance of ability given either of the two probable outcomes, a correct answer or an incorrect answer to item 
g. This expected value is merely a weighted sum, the sum of weighted variances. Prior to summation, the 
weights, the probabilities of the particular outcomes, are each multiplied by the variance associated with the 
particular outcome. 

In choosing the first item, a submodel-specific and computationally convenient identity of (5.2.1) (to be 
provided in Section 5.3) is actually employed. Each item in the ability bank is evaluated. The item g that yields 
the minimum value for the expected variance is chosen as the first item in the tailoring sequence. This item g 
is designated as item ^"* to indicate that this item g was chosen as the first item in the tailoring sequence. Such 
superscription cross-references the item as indexed within the ability bank as the first item in the tailored test. 
Items within the tailored test are sequentially ordered by the subscript n. For this particular item g, ^"", its 
subscript within the tailored test, then, is 1. According to the statistical rationale of the choice of this item, the 
item is by expectation the most informative. The information yielded by the binary score for this particular 
individual on this particular item is expected to provide the most severe restriction in the variance of ability or, 
synonomously, to result in the most precise estimate of this individual's ability given the items in the ability 
bank. 

To provide submodel specificity for (5.2.1), one should note that U* has the following realizations: 

For the two-parameter submodel, 
Mj, =  1 (answer correct) 

and 
M^ = 0 (answer incorrect); 

For the three-parameter submodel, 
u'^ =  1 (answer correct) 

■ ■' and 

u'g = 0 (answer incorrect). 

Thus, for the two-parameter normal ogive submodel, substitutions from (2.2.1) and (2.2.3) into (5.2.1) yield 

'iu, (THO* I U,) = P^ a^e* I M, =  1) + Q^ a'-iO*- \ u^ = 0); (5.2.2) 

and substitutions from (3.2.1) and (3.2.2) into (5.2.1) provide — 

%ui (THO* I u,) = p; a-\e* I M; = i) + e; (THO*- \ «; = o) (5.2.3) 

for the three-parameter normal ogive submodel. Subscripts on the various terms for individual / are omitted 
because such subscription is implied by context. In (5.2.2) and (5.2.3), submodel specificity is present, but 
computational convenience awaits the further developments in Section 5.3. 

The generalized expected value of the variance of ability has a recursive form. This recursive form is 
based on the same statistical rationale of item choice discussed in connection with (5.2.1). Identities of this form 
are used in choosing the nth item in the tailored sequence where n = \, 2 ... q^. This generalized recursive 
form is given by 

%:J^ a\0* I v*_,, U*) = Pr(«* =  I | v,t,) a^O* \ v*_,,«* =  1) 

+ Pr(M| = 0 I v*_,) 0-2(0* I v*_,,M* = 0). (5.2.4) 

The form (5.2.4) resembles (5.2.1) except that all terms are modified by the conditional and generalized outcome 
vector v*_,. The conditional and generalized outcome vector, v*_,, contains the binary scores for the answers 
to the (« - 1) previously chosen items, along with their original subscripts within the ability bank. In this context, 
the entry v*_,, for n equal to one represents the condition at the beginning of testing. Thus, v§ is a null entry, 
implied but often unwritten. The recursive form of the generalized expected value takes into account all the 
information previously obtained through the tailored testing of this particular individual where the chosen items 
accessed optimum information in terms of the reduction of the squared error or the minimization of the statistical 
expectation of the error variance in ability estimation. 

Identities of (5.2.4) that are both submodel specific and computationally convenient will be provided in 
the next section. The purposes in introducing (5.2.4) at this juncture is to complete the discussion of the statistical 
rationale basic to the choice of items in the tailored testing context. 
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5.3 Developments from Selection Theory 

Selection theory was introduced in a landmark publication by Lawley (1943). This theory later guided 
important developments by Gulliksen (1950) in the treatment of the effects of variable selection on reliability 
and validity. Here, this theory provides the basis for developments leading to tailoring algorithms for both the 
two- and three-parameter normal ogive submodels. 

For a very readable and comprehensive discussion of selection theory, the interested reader should consult 
Lord and Novick (1968). Their discussion provides an excellent background for an understanding of the devel- 
opments leading to the tailored testing algorithms. 

In selection theory, several important points emerge. Two of these points are particularly important from 
the standpoint of tailored testing. First, any specifiable method of explicit selection is permissible. This point 
has implications with respect to terminology. In earlier discussion, explicit selection and explicit rejection were 
considered as analogues of the realizations of the U^ and the U'^. However, since any specifiable method of 
explicit rejection might then also be used as a method of explicit selection, the distinction between explicit 
selection and explicit rejection becomes unnecessary in derivational contexts. In general discussion, this distinction 
will still be used to promote understanding. When the general meaning is intended mainly in derivational contexts, 
the terminology explicit selection will appear in italicized form. Also to appear in italicized form will be the 
terminology incidental selection, which similarly subsumes in meaning incidental selection and incidental rejection 
because the change in perspective is permissible given the theory. That any method of explicit selection is 
permissible is advantageous. This permissibility allows the use of the notation U* for the generalized binary 
random variable that provides the analogues of explicit selection. Submodel specificity and binary score contin- 
gency can be introduced after key derivations have been obtained. Second, successive explicit selections can be 
summarized in a single matrix operation. This particularly important point allows developments leading to 
termination rules for the tailored testing process. These developments are presented in Chapter 7 and involve 
derivations which indicate the effect of termination on the reliability of the results of the tailored testing process. 

The requirements of selection theory may be succinctly summarized in two basic assumptions. The first 
assumption is that the regression of variables effected by incidental selection on variables of explicit selection 
is linear; and the second assumption is that the partial variance-covariance matrix for the variables effected by 
incidental selection, given the variables of explicit selection, is homoscedastic. 

Generalized expressions for the choice of items, the estimation of ability, and the estimation of the 
variance of ability will now be derived from selection theory for the first two items in a tailored test. These 
expressions will then be rendered submodel specific as well as contingent upon the binary scores. In the following 
chapter these expressions will be summarized. Recursive forms will then be induced that are appropriate for any 
item with subscript n. 

The Three-Variable Selection Problem 

The three-variable selection problem provides the setting in which answers are obtained to the following 
questions: 

1. Which item should be given first? 
2. What is the estimate of ability given the binary score on this first item? 
3. What is the variance of ability given the binary score on this first item? 
4. Can this process of choosing and of estimating ability and its variance be extended to a second item? 
In answering these questions generalized expressions are derived from the assumptions underlying the 

three-variable selection problem. These expressions are then rendered in specific form by submodel and binary 
score. In the three-variable selection problem, explicit selection on a predictor variable Zj is to occur after explicit 
selection on a predictor variable Z,. Incidental selection on the predictor variable Zj and the criterion variable 
O* was imposed through explicit selection on the predictor variable Z,. There will be further incidental selection 
with respect to the criterion variable O* through subsequent explicit selection on the predictor variable Zj. 

Assumptions. Three subsidiary assumptions are involved: (a) the regressions of the predictor variable Zj 
and the criterion variable 6* on the predictor variable Z, remain unchanged by explicit selection on predictor 
variable Z,; (b) the partial variances of the predictor variable Zj and the criterion variable 0* remain unchanged 
by explicit selection on the partialled predictor variable Z,; and (c) the partial correlation between the predictor 
variable Z2 and the criterion variable 0* is unaltered by explicit selection on the partialled predictor variable 
Z|. These subsidiary assumptions are consequences of the two basic assumptions presented earlier. 
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Assumption (a) is algebraically expressed in 

p(Z,,Z2 i vf) I        = p{Z,,Z2) ——- (5.3.1) 
o-(Z| I vf) cr(Z|) 

and 

MZ„e|.n2ff?^^P,z„e,i^, ,5.3.2, 

where the regression coefficients on either side of the equal sign in both equations are presented as a product 
of a correlation coefficient and a ratio of standard deviations. The conditional expression vf is the generalized 
outcome vector, now with one entry indicating whether Item 1 was in free-response or multiple-choice form, 
what the binary score was, and which item g, g"*, from the ability bank was selected as Item 1. This binary 
score and item identification allow complete definition of the specific method of explicit selection that occurred 
on Z,. Accordingly, p(Z,,Z2 | vf) and p(Z^,0 \ vf) are the respective correlations between Z, and Zj and 
between Z, and 0* after explicit selection on Z, as denoted by vf. Similarly, the o-(Z| | vf), crCZj | vf), and 
cr(0* I vf) are the standard deviations of the indicated variables after explicit selection on Z,. The other terms 
are as defined earlier. 

Assumption (b) is algebraically expressed in 

aHZ. I vf) [1 - p\Z„Z, I vf)] = aHZ.) [1 - pHZ,,Z.)] (5.3.3) 

and • , - 

a\9* I vf) [1  - p2(Z,,e| vf)] = cT'-(e*) \\  - p2(Z,,0)]. (5.3.4) 

The expressions on either side of the equal signs in both (5.3.3) and (5.3.4) are partial variances. In (5.3.3), 
the partial variances are those for Z, after and before explicit selection on Z,, where Z, is the partialled variable. 
In (5.3.4) the partial variances are those for 0* after and before explicit selection on Z,, where Z, is the partialled 
variable. 

Assumption (c) is algebraically expressed in 

p(Z.,0| vf) - p(Z|,Z2| vf)p(Z|,0| vf) ^     p{Z2,e) - p(Z,,Z.) p{Zi,0) 

VI - p^(Z,,Z2|vf)Vi - p^(z,,0|vf)    VI - p2(z,,Z2) vi - p\z„o)       ^^-^-^^ 

where the expressions on either side of the equal sign are the partial correlations between Zj and 0* where Z, 
is the partialled variable. Reading from left to right in (5.3.5), one has that the partial correlation after equals 
the partial correlation before explicit selection on Z,, where the specific method of explicit selection is indicated 
by vf. 

The relationships entailed in (5.3.2) and (5.3.4) can be examined in Figure 2.3.1 and Figure 3.3.1 for 
the specific case where 6* equals 0, or where 6* is in standard score form. It was noted earlier that the means 
and variances of the conditional distributions of 0 given ^^ were undisturbed given either outcome or realization 
of U^ or U'^. The particulars of the outcome are now recorded in vf. Because the means that define the regressions 
of 0 on (^, are undisturbed and the undisturbed variances of 0 given (^, are identically the partial variances where 
Z^, is the partialled variable, these assumptions have been anticipated by prior assumptions. The prior assumptions 
are those of a normal distribution of ability and the normal ogive regression of U^ or W, on ability, which in 
turn define the joint distributions of the Z^, and 0 as bivariate normal. As seen in Figure 2.3.1 and Figure 3.3.1, 
the relationships given in (5.3.2) and (5.3.4) are merely the consequences of explicit selection given bivariate 
normality. 

In regard to Figure 2.3.1 and Figure 3.3.1, imagine a rescaling of 0 that results in a given 0*. This 
rescaling would merely change the slope of the regressions and alter the magnitude of the partial variances where 
the Z^ are the partialled variables. Subsequently, explicit selection on the Z^ would still leave the regressions 
and the partial variances undisturbed as indicated in (5.3.2) and (5.3.4) 

Which Item First? At this point, each item g in the ability bank is potentially the first item in the tailored 
test. Which Z^, becomes Z, is then the question. Thus the possible entries in vf must be probabalistically anticipated 
in order to obtain the most informative entry. To do this, one rewrites (5.3.4) as 

cj\0* I U*) [1 - pHZ^,0 I f/J)] = ^2(0*) [1 - p2(Z,,0)], (5.3.6) 
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which may be rearranged and transposed as ' .        ■ 

(7^(0* I u*) = aHo-^) 11 - p-(Z,,0)i + cT\e* I [/*) p\z^,e \ u*). 

Also, since any Z^ is potentially Z, and vf must be anticipated, one rewrites (5.3.2) as 

(5.3.7) 

(5.3.8) 

where it is to be noted from prior discussion that the standard deviations of the Z^, the a-(Z^), are all unity. 
After this substitution for a{Z^), and the squaring of both sides of (5.3.8), it is known that 

(T-(e* 1 t/f) 
pHz^,e\ uf) 

a-HZ^ I (/|) 

where an explicit solution for (?(Z^,Q \ U*) yields 

p\z^,e\u-^) = pHz,,9) 

p\z^,e) a\e*-). 

aHZ, I U*) aHO*) 

(5.3.9) 

(5.3.10) 
o-Ho-* I uf) 'y 

which may be substituted into (5.3.7). After this substitution, one has, through rearranging terms, 

a^e* I t/*) = aHO*) {1 - pHZ^.O) [1 - a'-{Z^ \ f/*)J} (5.3.11) 

as the variance of ability for the realizations of   [/* which can be rendered both submodel and outcome specific. 
For the two-parameter normal ogive submodel, or the case where t/J = U^, where a correct answer to 

item g, (MJ,   =   1), is the anticipated outcome, a substitution from (2.2.7) into (5.3.11), along with some 
rearrangement, yields , -v 

0-2(0* I u^ =  1) = o-^(0*)    1  - pHZ^,0) '/'(y.) 
y. (5.3.12) 

as the variance of ability given the correct answer. Under the same submodel and in anticipation of an incorrect 
answer to item g, (u   = 0), a substitution from (2.2.8) into (5.3.11), along with some rearrangement, provides 

0-2(0* I u^ = 0) = o--(0*) pHZ^.O) (biy,) t/>(y,) 
y, (5.3.13) 

as the variance of ability given the incorrect answer. ' - ■"'■     ■ 
For the two-parameter normal ogive submodel, where (/* = U^, substitutions from (5.3.12) and (5.3.13) 

into (5.2.2) move one closer to an answer to the query: Which item first? After these substitutions, it is known 
that 

%^^ aHO* \ U,) = P, (THO*)    1 - pHZ^,0) <t^(y,) </'(7, 

P.. 
X^' 

Q, £72(0*)    1 - pHZ,,0) <^(r,) <t^iy,) 
y., (5.3.14) 

which can be simplified. Multiplying through both expressions in braces on the right side of (5.3.14) by their 
respective probabilities, P^ and Q^, and by rearranging and combining these expressions, one obtains 

%^^ a\0* I (/,) = '     ■ ■     ■ ■'   ■■     ■   ■ 

cr2(0*) |p, - p2(Z,.,0) i^^ + pHZ,,e) cA(y,) y, + Q, - pHZ^^O) ^^^ - p^-(Z^,6) 0(r,) y,|, 

(5.3.15) 

where P^ and Q^ are complementary terms adding to 1, and the third and sixth expressions within the braces 
cancel each other. Thus, one may write 

%u^ aHe* I t/,) = o2(0*) I 1  - p^{Z^,e) Wy,)\^   7 + ^ (5.3.16) 
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where the two fractions can be provided a common denominator. It is then known that 

But Pg and Q^ are complementary terms adding to 1, which leads to the computationally convenient solution 

%u, a^ie* I [/,) = a\0*)    1  - p\Zg,e) [cA(7,)]- (5.3.17) 

%a, ^\0* I (/,) = aHO*)    1 - p\Z.,0) (5.3.18) 

The item g for which (5.3.18) is a minimum is, then, the most informative first item given the two-parameter 
normal ogive submodel. Note that the variance of ability, (7^(0*), is a constant in the evaluation of all items 
with subscript g. Thus the maximum over g of the second term within the braces in (5.3.18), 

max  p^{Z ,0) my,)? 
PA 

(5.3.19) 

will yield an identical g to that provided by the full evaluation of (5.3.18) for all g\ and, obviously, the minimum 
over g of the reciprocal of the second term within the braces in (5.3.18), 

PM H^K 

,    PHZ,,0) [<t>{y,)f ' (5.3.20) 

will yield the same g as would the full evaluation of (5.3.18) for all g. Either (5.3.19) or (5.3.20) may then be 
used to choose the most informative first item. While the quantities provided by (5.3.18) yield more information 
on the items, either (5.3.19) or (5.3.20) will provide an identical choice of item. The use of either will introduce 
a computational savings. 

For the three-parameter normal ogive submodel, or the case where U* = U'^, when a correct answer to 
item g, (u'^ = 1), is the anticipated outcome, a substitution from (3.2.5) into (5.3.11), along with some 
rearrangement, provides 

a\e* I M; = 1) = 0^(0*)   1 - p^{z.,e) (1 - c,) 4>{y,) (1 - c.) <P(y,) 

PI 
(5.3.21) 

as the variance of ability given the correct answer. For the same submodel and in anticipation of an incorrect 
answer to item g, (u'^ = 0), a substitution from (3.2.6) into (5.3.11), along with some rearrangement, yields 

cr2(0* I „'  = 0) = 0-2(0*) pHz^,e) <l>iy,) 
y. (5.3.22) 

as the variance of ability given the incorrect answer. 
For the three-parameter normal ogive submodel, where U* = U'^, substitutions from (5.3.21) and (5.3.22) 

into (5.2.3) move one closer to an answer to the query: Which item first? After these substitutions, it is known 
that 

«f/,' cr\e* I f/;) = p; ^^(0*)   i - p\z,o) (1 - q.) <A(y.) 

+ e; cr2(0*)  i - p\z^,e) 

P'. 
<^(T,) 

(' -^.)^(y.) 
P'x 

4>iy,} 
+ y. (5.3.23) 

which can be simplified. Multiplying through both expressions in braces on the right side of (5.3.23) by their 
respective probabilities, P'^ and Q'^, and rearranging and combining t+iese expressions, one obtains 

0-2(0* I U') 

= (72(0*)    />; - p2(Z„0)(l  ~ c,) 2 WM: 
P: 

p2(Z„0)(l  - c,)(/)(7,)7. 

+ Q, - e, p-(z^,o)     ' e;r(Z„0)^y4.     (5.3.24) 
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But P'g and Q'^ are complementary terms that add to 1, and substitutions from (3.2.2) into the fifth and sixth 
terms within the braces in (5.3.24) allow further changes toward simplification. After this addition and these 
substitutions, one may write 

%u. cT\e* 11/;,) 

or2(0*)  1 - pHz,,e)(\ - c- p\Z^,e)(\ - r,)</)(y,)y. 

- p\Z^,e) (I  - q,) ^^^ - pHZ^,e) (l  - r,) <^(y,,) yJ,       (5.3.25) 

where the third and fifth terms within the braces in (5.3.25) now cancel each other. The fourth term within the 
braces in (5.3.25) may now be multiplied in both the numerator and denominator by (1 — c^). Thereafter, a 
substitution from (3.2.2) into the fourth term yields 

,. a\0* I U') = a2(0*)    1  - p2(Z   e) (1  - ,. )2 ,, [</>(%)]' 

P' 
p\Z^,0){\ - L-) , ,2 WM: 

e; 

P'      0' 

0' P' ^R       _j_       '  R 

where the second and third terms can now be combined, providing ^ • 

%u' (T\e* I f/;) = (7^(0*)  1 - p\z^,0) (1 - q,)2 [^(^^)|2 

The two fractions in (5.3.27) can now be provided a common denominator. One then has 

%u. aHe* I u',) = aHe*)   i - p\z^.e) (i - q,)- my^)V- 

But P'^ and Q'^ are complementary terms that add to 1. Thus it is known that 

^„. a\e* I (/;,) = (T-(e*) j i - p\z^,e)(\ - c,)^ 

which may be written as 

%y. aHe* 11/;) = o-Ho*) {1 - pHz,,0) (i - c,) 

P'RQ'R       P'RQ'R. 

P'O' 

P'RQR 

(5.3.26) 

(5.3.27) 

(5.3.28) 

(5.3.29) 

(5.3.30) 

because of (3.2.2). In (5.3.30), one now has a computationally convenient solution for the evaluation of each 
item g. That item g for which (5.3.30) is a minimum is, then, the most informative first item given the three- 
parameter normal ogive submodel. Again note that the variance of ability, o-^(0*), is a constant in the evaluation 
of all items with subscript g. Thus the maximum over g of the second term within the braces in (5.3.30) 

max   p2(Z<,,e) (1  - c^) 
Wy,)Y 

P'RQR 
(5.3.31) 

will yield an identical g to that provided by the full evaluation of (5.3.30) for all g; and, obviously, the minimum 
over g of the reciprocal of the second term within the braces in (5.3.30), 

P'RQR 

,    p\Z^,e) (1 - eg [<S){y,)V ' 
(5.3.32) 

will yield the same g as would the full evaluation of (5.3.30) for all g. Either (5.3.31) or (5.3.32) may then be 
used to choose the first item. While the quantities provided by (5.3.30) are more informative with respect to 
each item, either (5.3.31) or (5.3.32) may be used to choose the identical item. The use of either will provide 
a computational savings. 

At this juncture, it may be assumed that the first item has been chosen. In the case of the two-parameter 
normal ogive submodel, one may have used either (5.3.18), (5.3.19), or (5.3.20) for this purpose. In the case 
of the three-parameter normal ogive submodel, one may have used either (5.3.30), (5.3.31), or (5.3.32) for this 
purpose. This item is subscripted by n within the tailored test. Because this is the first item in the tailored test, 
its subscript takes on the value 1. 
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What Is the Estimate of Ability Given the Binary Score on this First Item? From (2.2.23), (2.2.29), 
(3.2.15), and (3.2.16), one knows that the generalized expression for the estimator of ability is 

At(0* I t/f) = ixO*) + p{Z^,0) o-(0*) iJ.{Z, I Vf), (5.3.33) 

where ;u,(Z| | f/f) is weighted by the regression coefficient given on the right side of the equal sign in (5.3.2). 
Remember that the numerical value of a■{Z^) in (5.3.2) is known to be 1. 

One can now derive the estimator of ability for the two-parameter normal ogive submodel, or the case 
where (/f = f/,, when a correct answer to Item 1, («; = 1), is the observed outcome. A substitution from 
(2.2.23) into (5.3.33), while exchanging the alias n for the chosen g<" provides 

/u,(0* I M, = 1) = M(0*) + p{Z\,0) c^iO*) fi(Z, I M, = 1), (5.3.34) 

which may be expressed as 

/x(0* I M, =  1) = M©*) + p(Z|,e) (7(0*)^^ (5.3.35) 

because of (2.2.23). The estimator of ability can also be derived for the same submodel and an incorrect answer 
to Item 1, (Ml = 0). A substitution from (2.2.29) into (5.3.33), while exchanging the alias n for the chosen 
g'", provides 

IJiiO* I M, = 0) = fjiiO*) + p(Z,,e) o-(0*) /j.(Z, I M, = 0) (5.3.36) 

which may be expressed as 

M(0* I M, = 0) = fjiiO*) - p(Z„0) (T(0*) ^^ (5.3.37) 

because of (2.2.29). In (5.3.35) or (5.3.37), one has a convenient expression to estimate ability given either 
outcome in the encounter between the individual and Item 1 under the two-parameter normal ogive submodel. 

One can now derive the estimator of ability for the three-parameter normal ogive submodel, or the case 
where f/f  =  U\, when a correct answer to Item 1, (wj   =   1), is the observed outcome. A substitution from 
(3.2.15) into (5.3.33), while exchanging the alias n for the chosen ^"', yields 

p.(e* I Mj = 1) = /LiO*) + p{Z^,e) cr(0*) p.{Z, I u\ =  1), (5.3.38) 

which may be expressed as 

Me* |M1 =  I) = /x(e*) + p(Z,,0)(r(0*)(l  - r,)^^ •        (5.3.39) 

because of (3.2.15). The estimator of ability can also be obtained for the same submodel given an incorrect 
answer to Item \. (u\ = 0). A substitution from (3.2.16) into (5.3.33), while exchanging the alias n for the 
chosen g'", yields 

iJLiO* I u\ = 0) = /x(0*) + p{z,,e) die*) fx(z, \«; = o), (5.3.40) 

which may be expressed as 

^(0* I u\ = 0) = M(e*) - p(2i.e) (Tie*) ^^ '   (5.3.41) 

because of (3.2.16). In (5.3.39) or (5.3.41), one has a convenient expression to estimate ability for either outcome 
in the encounter between the individual and Item 1 given the three-parameter normal ogive submodel. 

Notice that /x(0* | w, = 0) and /u,(e* | u\ = 0), as algebraically defined in (5.3.37) and (5.3.41), 
respectively, are identical. These identities occur because /u,(Zi | M, =0) and /u,(Z, | u[ = 0), as included in 
(5.3.36) and (5.3.40) respectively, also have identical algebraic definitions. The mean of Z^, for the subpopulation 
on the interval from negative infinity to y^ remains undisturbed by success due to guessing. Success due to 
guessing is assumed to occur at random over this interval of Z^,. 

What Is the Variance of Ability Given the Binaiy Score on the First Item? In deciding which item to 
choose as the first item in the tailored test, it was necessary to obtain solutions for the variances of ability given 
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the realization of U*. The generalized expression was derived in (5.3.11) and was given submodel and outcome 
specificity in (5.3.12), (5.3.13), (5.3.21) and (5.3.22). In this context, it is necessary merely to alias the chosen 
g*" by n in each of these equations to obtain the appropriate expressions. 

Thus, the generalized expression for the variance of ability given the realizations of (/f is obtained from 
(5.3.11) through the aliasing of subscripts as 

cr\e*\ Uf) = aHO*) {1  - p2(Z,,e) [1 - ^2(Z, I Uf)\}. (5.3.42) 

For the two-parameter normal ogive submodel, where Uf   =   [/,, and a correct answer to Item  1, 
(M, =  1), is the observed outcome, the aliasing of the subscripts in (5.3.12) provides 

0-2(0* 1) = a-\e*)    1  - p\Z^,e) c/'(y,) 4>(y^) 
Ti (5.3.43) 

as a convenient expression for the estimation of the variance of ability. For the same submodel and an incorrect 
answer to Item 1, («, = 0), the aliasing of the subscripts in (5.3.13) yields 

CTHO* I M, = 0) = 0-2(0*) P-(Z,,0) 0(71) 
Ti (5.3.44) 

as a convenient expression for the estimation of the variance of ability. 
For the three-parameter normal ogive submodel, where t/f   =   U\, and a correct answer to Item 1, 

(M[ =  1), is the observed outcome, the aliasing of the subscripts in (5.3.21) provides 

cr2(0* I M;  =  1) = 0-2(0*) P-(Z,,0) 
(1 - c,) (A(y,) (1 - ^■i)0(y,) 

P\ Ti (5.3.45) 

as a convenient expression for the estimation of the variance of ability. For the same submodel and an incorrect 
answer to Item \, {u\ = 0), the aliasing of the subscripts in (5.3.22) yields 

0-2(0* 0)   =   0-2(0*) p-(Z,,e) ^(Til 
Ti (5.3.46) 

as a convenient expression of the estimation of the variance of ability. Notice that the expressions on the right 
side of equations (5.3.44) and (5.3.46) are identical. This indicates that o-2(Z, | t/f) of (5.3.42) is identical for 
the realizations (M, =0) and {u\ = 0). The reason for this identity is that the variance of Z^ for the interval on 
Z^ from negative infinity to j^ remains undisturbed by the effect of guessing in the three-parameter normal ogive 
submodel because success due to guessing is assumed random over this interval. 

Can This Process of Choosing and of Estimating Ability and its Variance be Extended to a Second 
Item? One begins tailoring a test for an individual with ;u.(0*), o^(0*), and, consequently, a-(0*), known. 
These values represent the initial estimate of the individual's ability, its variance and its standard deviation. In 
the case of the two-parameter normal ogive submodel a* and b* are known for all g. Given a* and o-(0*), 
p{Z^,e) can be obtained for all g through the use of (2.2.21); given a*, b*, ya(0*) and o-2(0*)^ y^ can be 
obtained for all g through the use of (2.2.22); and given y^, P^ and g, can be obtained for all g through the 
use of (2.2.1) and (2.2.3). Remember (/)(7^) is merely the density in the standard normal distribution evaluated 
at y^ as given by (2.2.5). Thus, one can use (5.3.18) or, consequently, (5.3.19) or (5.3.20), to choose the first 
item, because the required inputs for these equations are known or readily obtainable. What is known or readily 
obtainable at this point is also sufficient for the estimation of ability and the variance of ability. Given the selected 
item, g'", its subscript is aliased by n where n equals one. Then Item 1 is presented to the individual. If this 
individual's answer to Item 1 is correct, (5.3.35) is used to estimate this individual's ability, and (5.3.43) is 
used to estimate the variance of this individual's ability estimate. If the individual's answer to Item 1 is incorrect, 
(5.3.37) is used to estimate this individual's ability; and (5.3.44) is used to estimate the variance of this individual's 
ability estimate. 

In the case of the three-parameter normal ogive submodel, one also knows a*, b*, and c* for all g. 
Given a* and o-(0*), p(Z^,0) can be obtained for all g through the use of (2.2.21); given a*, bf, yu.(0*) and 
0-^(0*), y, can be obtained for all g through the use of (2.2.22); and given y^, P'^ and Q^ can be obtained for 
all g through the use of (3.2.1) and (2.2.3). The density in the standard normaf distribution evaluated at y^, 
(t>(yg), can be obtained by evaluating (2.2.5) for all g. Thus, one can use (5.3.30) or, consequently, (5.3.31) 
or (5.3.32) to choose the first item because the required inputs for these equations are known or readily obtainable. 
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What is known or readily obtainable at this point is also sufficient for the estimation of ability and the variance 
of ability. Given the selected item g'", its subscript is aliased by n where n equals one. Item 1 is then presented 
to the individual. If this individual's answer to Item 1 is correct, (5.3.39) is used to estimate this individual's 
ability; and (5.3.45) is used to estimate the variance of this individual's ability estimate. If this individual's 
answer to Item 1 is incorrect, (5.3.41) is used to estimate this individual's ability; and (5.3.46) is used to estimate 
the variance of this individual's ability estimate. 

The generalized outcome vector v*_| by designation records the (n-1) reahzations of f/*_, for 
(n-1) = 0,1, ... (qi~\)- At this point vf contains one of four possible entries: M,,^,!!, = 1, M,|^III, = 0, 
u[. 111. = 1, or u[, ,(ii, = 0, where the bracketed notation in the subscript denotes the ability bank subscript of the 
first chosen item. One now seeks the second item. The outputs of (5.3.35), (5.3.37), (5.3.39) and (5.3.41) may 
be rendered in generalized form as ix{6* \ vf). At this juncture, /u.(0* | vf) and o^(0* | vf) are known. Also 
known are the parameters a* and b*, in the two-parameter case, or a*, bf, and c*, in the three-parameter case, 
for all of the items in the ability bank. 

In the following developments it will be established that enough information is known for the choice of 
item, ability estimation, and the estimation of the variance of ability for a tailored test of two items. These 
developments follow from the assumptions, those underlying selection theory and the restricted updating pro- 
cedure. 

Under the restricted updating procedure the distributions of 0*(vf), the distributions of 0* resulting 
from incidental selection due to explicit selection on Z,, are assumed normal. This assumption provides a very 
workable approximation, although it is not readily apparent that this should be the case. For instance, it is known 
that the outcome dependent distributions, the 0*(v'^), can be strictly normal only when piZi,6) is zero. As 
p{Zi,6) approaches the limiting value of unity, the distributions of d*{v*) become identical in form (but not 
in scale) to those distributions arising from explicit selection on the continuous variable Z, as implied by the 
particular binary outcome vf. For the specific case where 0* is distributed as O and p{Zf,0) approaches unity, 
the distributions &*{v*) and Z,(vf) become identically distributed. 

The distributions of 0*(vf), as can be deduced from the earlier development of the normal ogive submodels 
and the illustrations of the hypothetical relationships underlying them in Figure 2.1.1 for the two-parameter case 
and in Figure 3.1.1 for the three-parameter case, are nonnormal. A serious question then is "How closely can 
p(Z|,0) approach this limiting value of unity and still provide for the workability of this approximation?" Since 
this assumption will be applied sequentially in the restricted updating procedure, a further serious question 
becomes "How workable is the approximation provided by the assumption of normal distributions for the 
0*(v*) as n, the number of items in the tailored test, increases?" 

The results obtained in answer to these serious questions tend to be counter-intuitive. The approximation 
appears particularly good given well-conditioned ability banks where an item is normally chosen with 
b* (v*_,) close in value to p.{6* \ v*.,). For instance, when the correlation p(Zi,0) is in the lower .90's, 
typically a maximum value for this correlation, the assumption still provides a very workable approximation. 
Also, the assumption provides a very workable approximation in sequential application. Because of the seriousness 
of these questions and the nature of their answers, results obtained from later developments will now be introduced 
which provide illustrations of the efficacy of the assumption underlying the restricted updating procedure. 

Data from an earlier empirical investigation (Urry, 1977) of the three-parameter normal ogive submodel 
are relevant. These data are provided in Table 5.3.1. In this table the specific case is treated where 0* is assumed 
as normally distributed with a mean of zero and variance of unity or where 0* is distributed as 0. The particular 
scaling of 0* has no effect on the form of the distributions of 0*(vi). In column (1), the sequential order of 
items, n, is presented for the tailored test given to individual /. The original correlation between Z„ and 0*,p(Z„,0), 
is given in column (2). The outcome dependent correlation between Z„ and 0*(v;,_i), 
p(Z„,01 v„_,), is tabulated in column (3). This correlation is the one modified by the restriction in range implied 
by the series of explicit selections on the continuous variables Z, through Z„ _ ,. Notice that this correlation more 
noticeably departs from the original correlation p{Z„,0), as given in column (2), when the restriction in range 
becomes more severe or when n, as given in column (1), increases. In columns (4), (5), and (6) the item 
parameters a„, b„, and c„ are provided. As will later be found, the entries in column (3) are obtained from a„, 
as given in column (4), and criO* \ v„), as given in column (9), through the use of (6.1.7) for the specific case 
where 0* is distributed as 0. In column (7) the binary outcome u'„, either a one or a zero is provided, indicating 
whether this individual's response to the multiple-choice item n was correct or incorrect. In columns (8) and 
(9), the tailored test results are presented for individual /. These results are obtained through the use of the 
tailored testing algorithm derived in Section 6.2. This algorithm requires the assumption that the distributions 
of 0*(v;,) or merely 0(v;,), in this situation, are normal. In column (8) the ability estimate, p(0* \ v'„), is 
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Table 5.3.1 
The Similarity of Tailored Test Results for Individual i Where the Tailoring Algorithm Requires or Does Not Require the 
Assumption of Normal Distributions for the 0*(Vn) 

Assumption of Normal Distributions for the 0*{v'„) 

Required by the Not Required by the 
t 

•■    ■' 

Binary 

Algorithm Algorithm 

Ability Ejror of Ability Error of 
Item Parameters Outcome Estimate Estimate Estimate Estimate 

n P(Z„,0) p{z„,e\v'„_ )      a„ b„ <^n U'n p.(e* 1 v;,) a(e* 1 v:,) M(e* 1 >-''.) <y{e* \ v'„) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

1 .90 .90 2.09 -.12 .18 .47 .86 .47 .86 
2 .91 .89 2.25 .59 .17 .93 .75 90 .76 
3 .89 .83 1.94 .78 .13 1.27 .64 23 .64 
4 .89 .79 1.99 .71 .15 1.44 .57 39 .57 
5 .81 .62 1.39 1.01 .15 1.59 .53 53 .55 
6 .87 .68 1.75 1.65 .24 1.77      ' .50 73 .56 
7 .82 .58 1.44 1.37 .23 1.88 .47 86 .54 
8 .84 .59 1.56 1.56 .30 1.98 .45 98 .52 
9 .90 .69 2.11 2.26 .30 1.80 M 76 .41 

10 .82 .49 1.44 1.41 .24 1.87 .38 84 .39 
11 .82 .48 1.44 1.72 .25 1.95 .37    , 92 .38 
12 .82 .47 1.45 1.87 .26 0 1.80 .34 77 .35 
13 .82 .44 1.46 1.32 .25 1.85 •     .33 82 .33 
14 .81 .42 1.40 1.25 .29 1.88 .32 86 .32 
15 .80 .40 1.35 1.93 .28 1.94 .32 92 .32 

provided. This ability estimate is dependent upon the binary outcomes u'„ as denoted by the outcome vector v'„. 
Given the binary outcome on Item 1, this ability estimate is the mean of the distribution of 0*(v\). For the 
outcomes on items subsequent to Item 1, it represents an approximation to the mean of the distribution of 
0*{v'„) because of the updating assumption. In column (9) the error of the ability estimate cr(0* | vj is given. 
This error is also dependent upon the binary outcomes u„ as denoted by the outcome vector v;,. Given the binary 
outcome on Item 1, this error of the ability estimate is the standard deviation of the distribution of 0*(vi). For 
the outcomes on items subsequent to Item 1, it represents an approximation to the standard deviation of 0*{v'„) 
because of the updating assumption. In columns (10) and (II) the tailored test results for individual i obtained 
through the use of another algorithm are displayed. This algorithm does not require the assumption that the 
distributions of 0*(v„), or merely 0{v'„), in this situation, are normal. Under this algorithm, the distributions 
of 0*{v„) are obtained using a procedure to be described in Section 9.3. The means, the ju(0* | v;,), and the 
standard deviations, the (T{0* \ v;,), can then be calculated. In this algorithm the means and standard deviations 
are exactly determined. Thus /x(e* | v,;) is a least squares estimator of ability and o-(©* | v,',) is the error of this 
least squares estimator. The means and standard deviations are obtained through numerical integration. In this 
instance, the integrals required in the calculation of the means and standard deviations were evaluated through 
the use of Simpson's Rule. Given the required integrals, the means and standard deviations presented in columns 
(10) and (11) were then calculated. 

Since the tailored test results presented in columns (8) and (9) are obtained through the algorithm where 
the assumption of normal distributions for the 0*(v;,) is required, one can assess the workability of this ap- 
proximation by comparing these results with those presented in columns (10) and (11). These latter results were 
obtained through the algorithm where the assumption of normal distributions for the 0*(v'„) is not required. 

In Table 5.3.1, specifically in columns (8) and (10) for Item 1, it may be noted that the ability estimates 
are identical in value, .47, across algorithms, given the binary outcome on this item. Also, given the binary 
outcome on this item, it may be noted that the error of these ability estimates, as given for Item 1 in columns 
(9) and (11), are also identical in value, .86, across algorithms. Such is the case because the assumption of 
normality that is basic to the restricted updating procedure has not yet been invoked. Under the restricted updating 
procedure, normality is assumed in order to continue the estimation of ability and its error after the results have 
been obtained for the binary outcome on the first item. For Item 2, one can then compare the entry in column 
(8) with that in column (10) and the entry in column (9) with that in column (11) in order to judge the workability 
of this approximation. For the ability estimates, the /i,(0* | vj), the compared values are .93 and .90; and the 
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compared values are .75 and .76 for the respective errors of these ability estimates, the (T{6* \ v'2). This similarity 
in compared values occurs under the condition where p{Zi,6) as indicated in column (2) was .90 prior to the 
explicit selection on the continuous variable Z, as implied by the outcome vector vl. Thus, it is known that the 
distribution of 0*iv\) is, strictly speaking, nonnormal; but the similarity of results indicates that the assumption 
of normality provides a very workable approximation even when p{Z^, 6) closely approaches the limiting value 
of unity. Subsequently, the correlations of concern are the p(Z„,0 \ v;_,), as given in column (3). These 
correlations do not approach this limiting value as closely as those given in column (2) because of restriction in 
range. One then expects less severe departure from normality given the binary outcomes on subsequent items 
as indicated by the decline in the value of the correlations in column (3) in relation to those in column (2). 

Intra-item comparisons can likewise be made for the remaining items in Table 5.3.1. These further 
comparisons confirm the workable nature of the approximation provided by the assumption underlying the 
restricted updating procedure. The tailored test results reported for the binary outcome on Item 15 are of particular 
interest. At this point, the updating assumption has been invoked («- 1) or fourteen times. One can judge the 
workability of the approximation in sequential application then by comparing the fx(0* \ v\^) and the 
a{0* I vij) across algorithms. For Item 15, one will want to compare: the entry in column (8), or 1.94, with 
that in column (10), or 1.92; and the entry in column (9), or .32, with that in column (II), or .32; where the 
only discrepancy is a difference of .02 between /ix(0* | v^,) as approximated by the algorithm to be derived in 
Section 6.2 and ix{0* \ v\s) as obtained from the algorithm that does not require the assumption of normality 
for the e*(v;_,)- 

The workability of this approximation can also be assessed in the normative context. The comparisons 
made in Table 5.3.1 were within the individual and across algorithms. In the normative context, simulation 
procedures to be described in Chapter 11 may be used to assess the workability of this approximation. Fn brief, 
one determines a particular terminal error using the procedures to be described in Chapter 7. Tailored testing is 
then simulated for a large number of individuals until this particular terminal error is reached. Subsequently, 
one can correlate the obtained ability estimates with values of true ability which are known given the simulation 
procedure. Since the terminal error, given the updating assumption, allows a forecast of the correlation between 
ability estimates and the values of true ability, a comparison of the obtained correlation and the forecasted 
correlation provides an assessment of the workability of this approximation. If the obtained correlation is 
sufficiently close in value to the correlation forecasted from the theory, it can be concluded that the assumption 
provides a workable approximation. This conclusion follows because the forecasting of the correlation requires 
an unspecifiable but very large number of invocations of the updating assumption. In normative assessments of 
the efficacy of the normal assumption basic to the restricted updating procedure, it is also found that this assumption 
provides a very workable approximation. These findings necessarily follow when the individual assessments of 
this assumption indicate its efficacy. 

Since the 0*(vf) can be considered normal for practical purposes, the Zjiv^), the distribution of Zj 
resulting from incidental selection due to explicit selection on Z, can also be considered normal as a workable 
approximation. The reason for the workability of this approximation is that Z2(V| ) is a linear combination of 
ability and a homoscedastic random error variable, which is normally distributed. Remember, the random error 
variables are assumed under the basic model to be independent from item to item. Thus explicit selection on Z, 
has no effect on the homoscedastic random error in Zj. As a result, the joint distribution of Z2(vf) and 0*{v*) 
is bivariate normal to a workable approximation. 

Because bivariate normality is a workable approximation, one should seek convenient expressions for 
p(Z2,6 I V*), the correlation between Z2(vf) and 0*(v*), and 72(^*)' the point of dichotomization on Z2(vf), 
or, synonomously, Z2(vf) after its standardization to a mean of zero and variance of unity. These expressions 
will allow one to continue with the repeated application of the selection or rejection analogy in the tailored testing 
context. One will then be considering explicit selection on Z2(V|), standardized Z2(v,), where the "cut score" 

is Jiivt)- 
Since the derivations leading to convenient expressions for p(^,0 | v,) and y2(»'i) are of considerable 

length and detail, only the principal results are presented here. These derivations may be found in Sections 5.4. 
In the course of these derivations, solutions are also found for the parameters a2(''i )> item discriminatory power, 
and b2{v*), item difficulty. These parameters are those for Item 2 that are appropriate for 0*(vf), or the 
continuous variable of ability given the generalized outcome v, in standardized form. These parameters provide 
the property of invariance. 

The presented expressions apply to any potential second item in the tailored test. At this juncture, there 
are (p— I) items remaining in the ability bank as possible choices for a second item. 
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In deriving a convenient expression for pCZj.O | vf), it is necessary to obtain Ujiv*), the item parameter 
of discriminatory power that is appropriate for 0*(vf), the standardized form of the continuous variable of ability 
subsequent to the generalized outcome vf. The solution for this parameter is provided by 

a.Cvf) = a* aiO* \ vf), (5.3.47) 

where a* is the parameter of item discriminatory power appropriate for O*, as known; and a(0* | vf) is the 
standard deviation of 6* given the generalized outcome vf, as provided by the square root of either (5.3.43) 
or (5.3.44) in the case of the two-parameter normal ogive submodel, or of either (5.3.45) or (5.3.46) in the case 
of the three-parameter normal ogive submodel. 

A convenient expression for the correlation between Z2 and O* given the generalized outcome vf, 
p(Z2,0 I V|), is provided by 

n(7   « I v^ - Q2(vf) atarjO* I vf) 
■       "^^^''"'^'^-{n-Mvf)PP = {i + [.,V(e*|vf)j^P' ■       (^-^-^s) 

where flzC^f) is the parameter of item discriminatory power appropriate for 0*(vt), as provided by (5.3.47); 
02 is the parameter of item discriminatory power appropriate for 0*, as known; and a(0* \ vf) is the standard 
deviation of 0* given the generalized outcome vf, as provided by the square root of either (5.3.43) or (5.3.44) 
in the case of the two-parameter normal ogive submodel, or of either (5.3.45) or (5.3.46) in the case of the 
three-parameter normal ogive submodel. 

In deriving a convenient expression for y2(>'f), it is necessary to obtain a solution for ^'.(vf), the parameter 
of item difficulty appropriate for 0*(vf), the continuous variable of ability given the generalized outcome vf 
in standardized form. The solution for this parameter is provided by 

,      .^       fc?-/x(0*| vf) 
^^^"'^^      a(0*|vf)      '       : , ■     -^       (5.3.49) 

where b* is the parameter of item difficulty appropriate for 0*, as known; /j,(0* | vf) is the estimator of ability 
as provided by either (5.3.35) or (5.3.37) in the case of the two-parameter normal ogive submodel or by either 
(5.3.39) or (5.3.41) in the case of the three-parameter normal ogive submodel; and a(0* | vf) is the standard 
deviation of 0* given the generalized outcome vf, as provided by the square root of either (5.3.43) or (5.3.44) 
in the case of the two-parameter normal ogive submodel, or of either (5.3.45) or (5.3,46) in the case of the 
three-parameter normal ogive submodel. 

A convenient expression for the point of dichotomization on Z2(vf), the standardized form of the con- 
tinuous variable Z, given the generalized outcome vf, is provided by 

^ .    _ fc*^M(0* I vf) ■■    . .      . 
^^^''■^~[(.f)- + c.^(0*|vf)]- ;. (5.3.50) 

where Oj and b* are the parameters of item discriminatory power and item difficulty, respectively, that are 
appropriate for 0*, as known; /u.(0* | vf) is the estimator of ability, as provided by either (5.3.35) or (5.3.37) 
in the case of the two-parameter normal ogive submodel or by either (5.3.39) or (5.3.41) in the case of the 
three-parameter normal ogive submodel; and aHO* | vf) is the variance of 0* given the generalized outcome 
vf, as provided by either (5.3.43) or (5.3.44) in the case of the two-parameter normal ogive submodel or by 
either (5.3.45) or (5.3,46) in the case of the three-parameter normal ogive submodel. 

As indicated by the asterisk on the generalized outcome vf, the item parameters defined in (5.3.47) and 
(5.3.49) are those for both the two- and three-parameter normal ogive submodels. These respective parameters 
are defined in an identical manner under both submodels. In the three-parameter normal ogive submodel, the 
third item parameter appropriate for 0*(vf), the standardized form of the variable of ability given the outcome 
V1, is provided by 

C2(vi) = c* = C2, ' (5.3.51) 

which indicates that the lower asymptote of the characteristic curve for Item 2 remains undisturbed by a linear 
transformation of the continuous variable of ability. 
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For both submodels, the given item parameters provide the property of invariance. The probabihty of a 
correct answer to Item 2 remains invariant for corresponding values of 9, 0*, and 0*(vf). Under these changes 
in the scale of the continuous variable of ability, the characteristic curve for Item 2 remains invariant. 

At this point, it is evident that the process can be extended. This extension of the process consists of 
choosmg the second item and of estimating ability and its variance given the outcome on this chosen item. For 
the extension of the process, one now turns to the setting of the four-variable selection problem. 

The Four-Variable Selection Problem 

The four-variable selection problem provides the setting in which the answers are obtained to the following 
questions: 

1. Which item should be given second? 
2. What is the estimate of ability given the binary score on this second item? 
3. What is the variance of ability given the binary score on this second item? 
4. Can this process of choosing and of estimating ability and its variance be extended to a third item? 
In answering these questions, generalized expressions are derived from the assumptions underlying the 

four-variable selection problem. These expressions are then rendered in specific form by submodel and binary 
score. In the four-variable selection problem, explicit selection on a predictor variable Z^ is to occur after explicit 
selections on the predictor variables Z, and Zj. Incidental selections on the predictor variable Z, and the criterion 
variable 6* were imposed through explicit selections on the predictor variables Z, and Z^. There will be further 
incidental selection with respect to the criterion variable 0* through subsequent explicit selection on the predictor 
variable Zj. 

Assumptions. Three subsidiary assumptions are involved: (a) the regressions of the predictor variable Z^ 
and the criterion variable 0* on the predictor variable Z, remain unchanged by explicit selections on the predictor 
variables Z, and Zj; (b) the partial variances of the predictor variable Z3 and the criterion variable 0*, where 
the partialled predictor variable is Zj, remain unchanged by explicit selections on the predictor variables Z, and 
Z2; and (c) the partial correlation between the predictor variable Z3 and the criterion variable 0* with Z2 as the 
partialled predictor variable remains unaltered by explicit selections on the predictor variables Z, and Zj. These 
subsidiary assumptions are consequences of the two basic assumptions presented earlier. 

Assumption (a) is algebraically expressed in 

p(Z2,Z3     V2)      ^„   I     *=   P(Z2,Z3 I  V| ) ,  ^     -   P(Z2,Z3) p.3.52) 
0-(Z2 I V2) 0-(Z2 I V| ) cr\^2) 

and 

p(Z2,0   V2) I   =,    = P(Z2,0 1 V,) I   ^    - p(Z2,0)--—- , (5.3.53) 
o-(Z2 I V2) o-(Z2 I V| ) cr^Lj) 

where the three equalities in both equations are regression coefficients presented as the product of a correlation 
coefficient and a ratio of standard deviations. The conditional expression v* is the generalized outcome vector, 
now with two entries: v* as defined earlier and an entry indicating whether Item 2 was in free-response or 
multiple-choice form, what the binary score was, and which item g, g*^', from the ability bank was chosen as 
Item 2. This binary score and item identification allow complete definition of the specific method of explicit 
selection that occurred on ~Z-^{yl). Accordingly, p(Z2,Z3 | v*) and p(Z2,0 | v*) are the respective correlations 
between Z2 and Z3 and between Z2 and 0* after explicit selections on Z, and Zjiy*). Correspondingly, 
cr(Z2 I v*), o-(Z3 I V*), and o-(0* | v*) are the standard deviations of the indicated variables after explicit 

selections on Z,, and Z2(vf). The other terms are as defined earlier. 
Assumption (b) is algebraically expressed in 

CTHZ^ I v2*)[l-p2(Z2,Z3 I v?)] = (THZ, I vt)[\-pHZ2,Z, I vf)] = aHZ,)l\ -pHZ2,Z,)]     (5.3.54) 

and 

(7^(0*1 v^[l-p2(Z2,0 I V2*)] = aHe*\vt)l\-pHZ2,e\v*)] = aHO*)[\-pHZ„e)],     (5.3.55) 

where the three equalities in both equations are partial variances. In (5.3.54) and reading from left to right, the 
partial variances are those of Z3: where the partialled variable is Z2; after explicit selections on Z, and Z2(V| ); 
after explicit selection on Z, and before explicit selection on Z2(v*); and before any explicit selection. In (5.3.55), 
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reading from left to right, the partial variances are those of O* where the partialled variable is Z,: after explicit 
selections on Z, and Z,(vf); after explicit selection on Z, and before explicit selection on ZjCvf); and before 
any explicit selection. 

Assumption (c) is algebraically expressed in 

p(Z„0\ V*) - p{Z2,Z, I V?) p(Z2,6\ V?) ^ p(Z„e\ vf) - p(Z2,Z3 I vt)p(Z2,0\vT) 

VI -pHZ2,Z, I v?) \/\-PHZ„0 I V?) VI -^PHZ2,Z, I vf) VI -p2(Z2,0 I vf) 

^ P(Z3,0) - p(Z2,Z3)p(Z,,e) 

Vl-p2(Z2,Z3) Vl-p2(Z2,0) ^^•^•^^' 

where the three equalities are the partial correlations between Z3 and O* where Z. is the partialled variable. In 
(5.3.56) and reading from left to right, this partial correlation is represented: after explicit selections on Z, and 
Z2(V|); after explicit selection on Z, and before explicit selection on Zjiv*); and before any explicit selection. 

Some Consequences of the Submodels and the Updating Assumption. At this juncture it is convenient to 
summarize some intermediate results. These results are derived in Section 5.4 and are required in subsequent 
derivations. These derivations will be used to develop solutions for the questions posed earlier: Which item 
should be given second? What is the estimate of ability given the binary score on this second item? and What 
is the variance of ability given the binary score on the second item? 

These intermediate results consist of expressions for: the probabilities of correct and incorrect answers 
to Item 2 given the generalized outcome vf; the means of ZjCvf) and Z2(vf) for each of the realizations of the 
generalized binary random variable U* where Zoiv*) is a mean deviate form of the continuous variable Z-,{vt); 
and the variances of Z2(vf) given each of the realizations of the generalized binary random variable U* where 
ZzCvf) is the standardized form of the continuous variable Z2 subsequent to the effects of incidental selection 
resulting from explicit selection on the continuous variable Z, as indicated by the generalized outcome v*. 

Given the two-parameter normal ogive submodel, the updating assumption, and the previous outcome 
V, 

outcome v 

The probability of a correct answer to Item 2, Pr(«2 =  1 | v,) or /'2(V|), is provided by 

Pr(M2 = 1 I V,) = P2(v,) = Pr[Z2(v,) ^ y.Cv,)] = <?! -y.Cv,)], (5.3.57) 

where Pr[Z2(v,) =s 72(^1)] is the probability that ^2(V|) is greater than or equal to 72(^1), the point 
of dichotomization on Z2(v,), the standardized form of the continuous variable Z2 subsequent to 
the effects of incidental selection resulting from explicit selection on the continuous variable Z, 
as indicated by the outcome v,. The point of dichotomization, yiivi), is provided by (5.3.50) 
after setting the generalized outcome v* equal to v,. In (5.3.57), '<f[-yzC^ij] is the cumulative 
normal distribution function evaluated for Z2(V|) on the interval extending from negative infinity 
to negative yzC^i) or, due to symmetry, the area above 7.(^1) in the standard normal distribution. 

The probability of an incorrect answer to Item 2, Pr(M7 = 0 | v,) or Qjivi)  is provided 
by 

Pr(M2 = 0 I V,) = e2fv,) = Pr[Z2(v,) < y2(v,)] = 'i>[T2(V|)], (5.3.58)       " ' 

where Pr[Z2(V|) < yjC^i)] is the probability that (.(Vi) is less than y2(V|), the point of dichotom- 
ization on Z2(V|), the standardized form of Zj subsequent to the effects of incidental selection ■ ' 
resulting from explicit selection on Z, as indicated by the outcome v,. The point of dichotomization 
is provided by (5.3.50) after setting the generalized outcome v* equal to v,. In (5.3.58), 'f'[y2(V|)] 
is the cumulative normal distribution function evaluated for that interval of Z2(v,) extending from 
negative infinity to y2(V|), or the area below y2(v,) in the standard normal distribution. 

Given  the  three-parameter normal  ogive  submodel,   the   updating  assumption,   and  the  previous 

The probability of a correct answer to Item 2, Pr(M2 =  I \ v[) or Pziv'i), is provided by 
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Pr(tt2 =  1 I vl) = PzCvl) 

= Pr[Z2(vi) & y2(v;)l + c-2 PrfZ^Cvl) < yzCvj)] 

= C2 + (1 - C2) <P[-y2(vl)], (5.3.59) 

where Pr[Z2(v;) ^ y2(»'i)] is the probability that l^iy'^) is equal to or greater than y2(vl), the point 
of dichotomization on Z2(v;), the standardized form of the continuous variable Z2 subsequent to 
the effects of incidental selection resulting from explicit selection on Z, as indicated by the outcome 
vl; 72(''i). as defined, is provided by (5.3.50) after setting the generalized outcome vf equal to 
vj; C2_is the coefficient of guessing for Item 2, as known; Pr[Z2(v;) < y2(»'i)] is the probability 
that l2{v\) is less than y2(vi}; and $[-y2(vi)] is the cumulative normal distribution function 
evaluated for the interval of Z2(v;) extending from negative infinity to negative y2(v;) or, due to 
symmetry, the area above y2(v;) in the standard normal distribution. 

The probability of an incorrect answer to Item 2, Pr(«; = 0 | v;) or Q2{v\)   is provided 
by 

Pr(M2 = 0 I vl) = Q2(v\) 

= (1  - ^2) Pr[Z2(vl) < y2(v;)] = (1  - C2) <J>[y2(vl)], (5.3.60) 

where Cj is the coefficient of guessing for Item 2, as known; Pr[Z2(v;) < y2(>'l)] is the probability 
that li{v\) is less than y2(vi), the point of dichotomization on Z2(vl), the standardized form of 
the continuous variable Z2 subsequent to the effect of incidental selection resulting from explicit 
selection on Z, as indicated by the outcome v,. The point of dichotomization y2(v',) is provided 
by (5.3.50) after setting the generalized outcome vf equal to v',. In (5.3.60), '(P[y2{v\)] is the 
cumulative normal distribution function evaluated for the interval of Z2(v;) extending from negative 
infinity to y2(vl), or the area below y2(v;) in the standard normal distribution. 

Given the two-parameter normal ogive submodel, the updating assumption, and the previous outcome 

The mean of Z2(vi), when a correct answer to Item 2 is observed, ^liZj \ V,,M2 =  1), is 
provided by 

MZ2 I v„«2 ^ 1) = ^^, : -      .    (5.3.61) 

where y2(V|) is the point of dichotomization on Z2(V|), the standardized form of the continuous 
variable Z2 subsequent to the effects of incidental selection resulting from explicit selection on 
the continuous variable Z, as indicated by the binary outcome v,; y2(V|) is provided by (5.3.50) 
after setting the generalized outcome v* equal to v,; 0[y2(V|)] is the density in the standard normal 
distribution evaluated at y2(V|), as obtained from (2.2.5) after a substitution of y2(v,) for y ; and 
P2(vi) is the probability of a correct answer to Item 2 given the outcome v,, as obtained from 
(5.3.57). 

The mean of Z2(V|) when an incorrect answer to Item 2 is observed, /x(Z2 | v^^Uj = 0), 
is provided by 

^(Z2 I v„«2 = 0) =  - ^i^, (5.3.62) 

where y2(V|) is the point of dichotomization on Z2(v,), the standardized form of the continuous 
variable Z2 subsequent to the effect of incidental selection resulting from explicit selection on the 
continuous variable Z,, as indicated by the outcome v,; y2(V|) is obtained from (5.3.50) after 
setting the generalized binary outcome v* equal to v,; <^[y2(V|)l is the density in the standard 
normal distribution at y2(v,) as provided by (2.2.5) after a substitution of y2(V|) for y^; and Q^(v^) 
is the probability of an incorrect answer to Item 2 given the binary outcome v,, as obtained from 
(5.3.58). 
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Given the three-parameter normal ogive submodel, the updating assumption, and the previous outcome 

The mean of Z2(v\) when a correct answer to Item 2 is observed, /^(Zj | vi ,«2 =  1), is 
provided by 

/x(Z2    V|,M2  =   1)  =  (1   -  C2)     „,,   ,^    , (5.3.63) 

where C2 is the coefficient of guessing for Item 2, as known; yjC''!) 's the point of dichotomization ' 
on Z2(v|), the standardized form of the continuous variable Z2 subsequent to the effect of incidental 
selection resulting from explicit selection on Z,, as indicated by the binary outcome vj; 72(''i) >s 
provided by (5.3.50) after setting the generalized binary outcome v* equal to v|; <^[72(>''i)] is the 
density in the standard normal distribution evaluated at yiiv]) as obtained from (2.2.5) after a 
substitution of ')'2(i'i) for y^,; and P'2{Vf) is the probability of a correct answer to Item 2 given the 
binary outcome v^ as provided by (5.3.59). 

The mean of Z2(vj) when an incorrect answer to Item 2 is observed, ^(.(Zj | vi ,u\ = 0), 
is provided by 

^■^2   V|,M2 = 0) =  , ,,   , (5.3.64 

where y2iv'\) is the point of dichotomization on Z2(v'|), the standardized form of the continuous 
variable Zj subsequent to the effect of incidental selection resulting from explicit selection on the 
continuous variable Z, as indicated by the binary outcome v\; ■y2(v\) is obtained from (5.3.50) 
after setting the binary outcome v* equal to vj; (p[y2(.v\)] is the density in the standard normal 
distribution evaluated at ■)'2(*''i)' as provided by (2.2.5) after a substitution of 72(>''i) for y^; and 
Q2(v\) is the probability of not recognizing the correct alternative to multiple-choice Item 2 given 
the binary outcome v\. The probability 22(^1) is provided by 

Q2(v\) = Pr[Z2(vl) < y2(v\)] = (P[y2(v\)], (5.3.65) 

where Pr[Z2(v'|) < 72(»'i)] is the probability that ^2(vi) is less than ■y2(»'i). the point of dichotom- 
ization on the continuous variable Z2(vj), the standardized form of Zj subsequent to the effect of 
incidental selection resulting from explicit selection on Z, as indicated by the binary outcome 
''i; 72(»'i) is obtained from (5.3.50) after setting the generalized binary outcome vf equal to v|. 
In (5.3.65), 'i'[y2(v\)] is the cumulative normal distribution function evaluated for that interval 
of Z2(v',) extending from negative infinity to -y2(''i). or the area below •y2(»'i) in the standard 
normal distribution. 

For later developments, it is useful to define the continuous variable Z2(vf) whose realizations, ^2(''f ),are 
provided by -. ■ 

.  .    Ciivt) = ^2 - A^(^2l vf). , . (5.3.66) 

This continuous variable is merely the continuous variable Z2 in mean deviate form about /u,(Z2 | vf), the mean 
of the continuous variable Z2 subsequent to the effect of incidental selection resulting from explicit selection on 
Z| as indicated by the generalized binary outcome vf. For this situation, it is known that the mean of the 
continuous variable Z2(v,) given the realization of the generalized binary random variable U*, /u.(Z2 | v* ,1]*), 
is provided by . . 

M(-Z2 I vf ,{/*)  =   Cr(Z2 I vf) /LA (Z2 I v*,Ut) 

= M(22| vf,{/2*) - M22I vf), (5.3.67) 

*\ where cr(Z2 | v,) is the standard deviation of the continuous variable ^ subsequent to the effect of incidental 
selection resulting from explicit selection on the continuous variable Z, as indicated by the generalized binary 
outcome V| ; /u,(Z2 | v, ,C/2) is the mean of Z2, the standardized form of the continuous variable Z2 subsequent 
to the effect of incidental selection resulting from explicit selection on the continuous variable Z, as indicated 
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by the generalized outcome v, , which is then subjected to explicit selection as indicated by the generalized 
binary variable f/,; /^(Zj | vf ,(/*) is the mean of the continuous variable Z, in its original scale after both the 
effect of incidental selection resulting from explicit selection on the continuous variable Z, as indicated by the 
generalized outcome vf and the effect of explicit selection as indicated by the generalized binary variable U*; 
and ^(Zj I V|) is the mean of the continuous variable Zj after the effect of incidental selection resulting from 
explicit selection on Z, as indicated by the generalized outcome v*. The generalized form (5.3.67) can be rendered 
both submodel and outcome specific. 

Given the two-parameter normal ogive submodel, the updating assumption, and the previous outcome 

v.: 

The mean of the continuous variable Z2(V|) when a correct answer to Item 2 is observed, 
/u-(Z2 I Vi,M2 =  1), is provided by 

fjiiZ, I v,,«. =  1) = a(Z, I V,) ^^^^, (5.3.68) 

where a(Z2 | v,), a term cancelled in later derivation, is the standard deviation of the continuous 
variable Z, after the effect of incidental selection resulting from explicit selection on the continuous 
variable Z, as indicated by the binary outcome v,; 72(i'i) is the point of dichotomization on the 
continuous variable Z2(V|), the standardized form of the continuous variable Zj subsequent to the 
effect of incidental selection resulting from explicit selection on the continuous variable Z,, as 
indicated by the binary outcome v,; (Al72(''i)l is the density in the standard normal distribution 
evaluated at y^Cvi); and PiivO is the probability of a correct answer to Item 2 given the binary 
outcome v,. 

The mean of the continuous variable Z2(V|) when an incorrect answer to Item 2 is observed, 
/Lt(Z2 I V|,M2 = 0), is provided by , '        . 

. .. •     ■ ^(Z,! v,,«2 = 0) =  - CT(Z2| v,)^^J^^, ■   (5.3.69) 

where o-(Z2 | v,), a term cancelled in later derivation, is the standard deviation of the continuous 
variable Z2 after the effect of incidental selection resulting from explicit selection on Z, as indicated 
by the binary outcome V|;-y2(Vi) is the point of dichotomization on Z^iv^), the standardized form 
of the continuous variable Z2 subsequent to the effect of incidental selection resulting from explicit 
selection on the continuous variable Z, as indicated by the binary outcome v,; (f)[y2{vi)] is the 
density in the standard normal distribution evaluated at ■Y2(v,y, and Qnivt) is the probability of an 
incorrect answer to Item 2 given the binary outcome v,. 

Given the three-parameter normal ogive submodel, the updating assumption, and the previous outcome 

The mean of the continuous variable Z2(v;) when a correct answer to Item 2 is observed, 
ya(Z2 I vj,«2 =  1), is provided by . 

fxiZ. I vi,M2 =  1) = <T(Z2 I v,)(l  - c-2) "^^jf'^K (5.3.70) 

where a-(Z2 | v',), a term cancelled in later derivation, is the standard deviation of the continuous 
variable Z2 after the effect of incidental selection resulting from explicit selection on the continuous 
variable Z, as indicated by the binary outcome v\; C2 is the coefficient of guessing for Item 2; 
•y2(vi) is the point of dichotomization on Z2(v',), the standardized form of the continuous variable 
Z2 subsequent to the effect of incidental selection resulting from explicit selection on the continuous 
variable Z, as indicated by the binary outcome v\; (jilyniv'])] is the density in the standard normal 
distribution evaluated at Jiiv]); and P2{v\) is the probability of a correct answer to Item 2 given 
the binary outcome vj. 

The mean of the continuous variable Z2(vi) when an incorrect answer to Item 2 is observed, 
lji{Z2 I vj,M2 = 0), is provided by 

fi(Z2 I v\,U2 = 0) =  - a{Z2 I vl) fe^, • (5.3.71) 
22(»'l) 
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where u{Z2 \ v',), a term cancelled in later derivation, is the standard deviation of the continuous 
variable Z^ after the effect of incidental selection resulting from explicit selection on the continuous 
variable Z, as indicated by the binary outcome v',; y2{y\) is the point of dichotomization on 
7Ay\), the standardized form of the continuous variable Z2 subsequent to the effect of incidental 
selection resulting from explicit selection on the continuous variable Z, as indicated by the binary 
outcome vj; (/>['y2(»'i)] is the density in the standard normal distribution at y2{y\)\ and Q2{\\) is 
the probability of not recognizing the correct alternative to multiple-choice Item 2 given the binary 
outcome v\. 

The submodel and outcome specific forms (5.3.68) through (5.3.71) will be used in later derivations. 
These later derivations will provide an answer to the query, "What is the estimate of ability given the binary 
score on the second item?" 

Given the two-parameter normal ogive submodel, the updating assumption, and the previous outcome 

The variance of the continuous variable Z2(V|) when a correct answer to Item 2 is observed, 
cr^(Z2 I V|,«2 =  1), is provided by . 

2/7   I ,^ 0-^(Z2 I Vi,K2   =   1) '      -i 
0-^(Z2 I  V,) 

where o-^(Z2 | v,,i<2 = 1) is the variance of the continuous variable Z2 as originally scaled after 
both the effect of incidental selection resulting from explicit selection on the continuous variable 
Zj as indicated by the outcome v, and the effect of explicit selection as indicated by uj, the 
realization of the binary variable U2; cr-{Z21 v,) is the variance of the continuous variable Z, after 
the effect of incidental selection resulting from explicit selection on the continuous variable Z, as 
indicated by the outcome v,; 72(^1) is the point of dichotomization on Z2(V|), the standardized 
form of the continuous variable Z2 subsequent to the effect of incidental selection resulting from 
explicit selection on the continuous variable Z, as indicated by the outcome v,; <^[y2(V|)] is the 
density in the standard normal distribution evaluated at y^C^'i); and P2(v\) is the probability of a 
correct answer to Item 2 subsequent to the outcome V|. 

The variance of the continuous variable Z2(V|) when an incorrect answer to Item 2 is 
observed, cr^(Z2 | V|,M2 = 0), is provided by 

v.: 

2/7   1 m '^^('^2 I  V\,'^2   =   0) .2/7   I .,   „    -  f^^  -  "  ^^2 1 """2 

?2 I V, a\Z2 I V,) 

<i}[y2{v\)] I </)[-y2(»'i)] 
e2(v,) I  e2(v,) 

+ r2(v,)    , (5.3.73) 

where cr^(Z2 \ V,,M2 = 0) is the variance of the continuous variable Z2 as originally scaled after 
both the effect of incidental selection resulting from explicit selection on the continuous variable 
Z| as indicated by the outcome v, and the effect of explicit selection as indicated by U2, the 
realization of the binary variable f/2; o"^(^21 I'l) is the variance of the continuous variable Z2 after 
the effect of incidental selection resulting from explicit selection on the continuous variable Z| as 
indicated by the outcome v,; 72(*'i) is the point of dichotomization on Z2(v,), the standardized 
form of the continuous variable Zj subsequent to the effect of incidental selection resulting from 
explicit selection on the continuous variable Z, as indicated by the outcome v,; 4>[y2{v\)] is the 
density in the standard normal distribution evaluated at y2(vi); and 22(''i) is the probability of an 
incorrect answer to Item 2 subsequent to the outcome v,. 

Given the three-parameter normal ogive submodel, the updating assumption, and the previous outcome 

The variance of the continuous variable Z2(vi), when a correct answer to Item 2 is observed, 
a^{Zi I v\,u'2 = I), is provided by; 



cr2(Z2 I V\,U2  =   1)  = 
0-^(Z2 I Vi,«2   =    1) 

(rHZ2 I  Vi) 

, (1    -   Cj)  4> [r2(vl)]   I   (1    -   C.) 4> [72(V1)] 
- 72(vi) 

(5.3.74) 

where cr\Z2 \ v\,U2 = 1) is the variance of ZT as originally scaled after both the effect of incidental 
selection resulting from explicit selection on the continuous variable Z, as indicated by the outcome 
v'l, and the effect of explicit selection as indicated by Uo, the realization of the binary variable 
U2, o^(Z21 v'l) is the variance of the continuous variable Z2 after the effect of incidental selection 
resulting from explicit selection on the continuous variable Z, as indicated by the outcome v',; C2 
is the coefficient of guessing for Item 2; Jiiv',) is the point of dichotomization on Z2(v;), the 
standardized form of the continuous variable Z2 subsequent to the effect of incidental selection 
resulting from explicit selection on the continuous variable Z, as indicated by the outcome v',; 
<f>[y2(vd] is the density in the standard normal distribution evaluated at ■Y2(v\); and /'2(vi) is the 
probability of a correct answer to Item 2 subsequent to the outcome vj. 

The variance of the continuous variable Z2(vj), when an incorrect answer to Item 2 is 
observed, (T^(Z2 | V[,U2 = 0), is provided by 

cr^(Z2 I V[M'2 = 0)  = 
o-^(Z2 I v\,u'2 = 0) 

crHZ2 i V,) 

where o-^(Z2 | vl.MJ == 0) is the variance of the continuous variable Z2 as originally scaled after 
both the effect of incidental selection resulting from explicit selection on the continuous variable 
Z2 as indicated by the outcome v', and the effect of explicit selection as indicated by MJ, the 
realization of the binary variable U2; a(Z21 v',) is the variance of the continuous variable Z2 after 
the effect of incidental selection resulting from explicit selection on the continuous variable Z2 as 
indicated by the outcome v,; y2iv\) is the point of dichotomization on ZjCvl), the standardized 
form of the continuous variable Z2 subsequent to the effect of incidental selection resulting from 
explicit selection on the continuous variable Z, as indicated by the outcome v\; 4>ly2{v\)] is the 
density in the standard normal distribution evaluated at •y2(v;); and Q2{v'i) is the probability of 
not recognizing the correct alternative to multiple-choice Item 2 subsequent to the outcome v',. 

The submodel and outcome specific forms (5.3.57) through (5.3.60) and (5.3.72) through (5.3.75) will 
be used in later derivations. These later derivations will provide answers to the queries, "Which item should be 
given second?" and "What is the variance of ability given the binary score on this second item?" 

Which Item Second? At this point, each item g excluding that item subscripted g"> is potentially the 
second item in the tailored test. Which of these Z^(v*) becomes Z2(vf) is then the question. As before, the 
possible second entries in v* must be probabalistically anticipated in order to obtain the most informative entry. 
To do this, one rewrites (5.3.55) for the first two equalities as 

^\e*\yt,U*)[\ - p\Z^,e\vt,U*)] = or^e* \vt)ll - pHZ^,0\vT)]   for alU where g^^<",     (5.3.76) 

which may be rearranged and transposed as 

aHe* I v*,UI) = aHe* | vf)[l - pHZ^,6\vt] 

+ aHe* I vf t/|)p2(Z,,0 I vf ,f/|)   for all g where g^g'-'\ (5.3.77) 

Also, since any remaining Z^{v*) is potentially Z2(vf) and the second entry in v* must be anticipated, the first 
two equalities in (5.3.53) may be rewritten as 

P(^.'e I ^f'^D !!(T|'jI'^:,^ = P(Z,,0 I vf) ""'f ' f   for all g where g^g^^\       (5.3.78) 
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Upon squaring (5.3.78), one obtains . 

p\Z^,0\ vtUt) ""Tjlllfjl! = r(^..6» I vt) 4f^  for all g where g^g^'\     (5.3.79) 

where an explicit solution for p^{Z^,0 \ v, ,t/*) yields 

CT\e* I vf) (T\Z^ I v*,m^ 
o-\Z^ I vf) (THO* I vf ,f/p 

p\Z^,e I vr,f/*) = P^(Z,,e I vf)    2'     i' A    2/^!     ^'„!    for all g where g^g'",     (5.3.80) 

which may be substituted into (5.3.77). After this substitution, one has, through rearranging terms, 

0-2(0* I v*,U*) 

a^{e* I vf)     1  - p\Z^,e\v*) ar\Z^\v*,Ut) 
^'(^Jvf) for all g where g7ig<"      (5.3.81) 

as the variance of ability given v'^ for the realizations of U* which can be rendered both submodel and outcome 
specific. 

For the two-parameter normal ogive submodel, where v* = v, and U* = Ug, and given a correct answer 
to a potential second item g, (u^ = 1), a substitution from (5.3.72) into (5.3.81), along with some rearrangement, 
yields 

0-2(0* I v^,u, =  1) ' ' 

- a\e*\v,)(^l  - p\Zg,0\v,)^^^^i^^^^^ - y,(voJ^   for all g where g^^",     (5.3.32) 

as the variance of ability given the correct answer. Under the same circumstances and given an incorrect answer 
to a potential second item g, (Ug = 0), a substitution from (5.3.73) into (5.3.81), along with subsequent 
rearrangement, provides 

0-2(0* I Vi,Ug   =   0) 

= a\e* I V,) (1  ~ pHZ^,e I V,) ^li^^^hjl^ + ^^,(,,)|]   for all g where ^^g<'.     (5.3.83) 

as the variance of ability given the incorrect answer. 
For the two-parameter normal ogive submodel, where v, = v, and U* = U^, substitutions from (5.3.57), 

(5.3.58), (5.3.82) and (5.3.83) for a potential second item g into (5.2.4) move one closer to an answer to the 
query: Which item second? After these substitutions, one has 

= P,(v,) .. (0* I V,) ^ 1  - p (Z„0 I V,) ^^ \--^^^ - y,(v,) J j 

for all g where g?^g"', ■ (5.3.84) 

which simplifies using steps identical to those of earlier developments, from (5.3.14) through (5.3.18), to 

%uy(0*\v,,Ug) = cj\e* I V|) ( 1 -p2(Z„0 i V,) i'^J^f''i^^J   for alU^ where g^^<".     (5.3.85) 

The item g, excluding item g*", for which (5.3.85) is a minimum, is then the most informative second item 
given the two-parameter normal ogive submodel. Note that the variance of ability, 0-^(0* | V|), is a constant in 
the evaluation of item g excluding item g'". Thus the maximum of the second term within the large parentheses 
in (5.3.85) for the remaining g, 
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max  p\Z^,0 I V|) I'^J^'f !!'i^\   for all g where g^g'", (5.3.86) 

will yield an identical g to that provided by the full evaluation of (5.3.85) for the remaining g; and, obviously, 
the minimum over the remaining g of the reciprocal of the second term within the large parentheses in (5.3.85), 

—^2 ^—•      fnr iill   o  w/h^rf*   a^o^'' 

p2(Z„0| v,){<A[y,,,(v,)]P 
min '*''—   f   —r   for all g where gT^g'", (5.3.87) 

^     f^ \ '-'i) 

will yield the same g as would the full evaluation of (5.3.85) for the remaining items. Either (5.3.86) or (5.3.87) 
may then be used to choose the most informative second item. While the quantities provided by (5.3.85) yield 
more information on each remaining item, either (5.3.86) or (5.3.87) provides an identical choice of item. The 
use of either will introduce a computational savings. 

For the three-parameter normal ogive submodel, where V| = v\ and U* = U'^, and a correct answer to 
a potential second item g, (u'^ = 1), is the anticipated outcome, a substitution from (5.3.74) into (5.3.81), along 
with some rearrangement, yields 

<r\e* I vi,«^ =1) 

= .(e*|v,)^i-p(z„e|v,)       ^,^^^,y    I      ;^^^,^^      - vv.)|j   ^^^^^^ 

for all g where g^^g'" 

as the variance of ability given the correct answer. Under the same circumstances and given an incorrect answer 
to a potential second item g, (u'^ = 0), a substitution from (5.3.75) into (5.3.81), along with some rearrangement, 
provides 

0-2(0* I V1,M;, = 0) 

= aHO* I V,) (l - p\Z^,e I vi) ^^^{^^^ + V"!)})   for all g where g^g<"    (5.3.89) 

as the variance of ability given the incorrect answer. 
For the three-parameter normal ogive submodel, where v, = vj and U* = U'^, substitutions from 

(5.3.59), (5.3.60), (5.3.88), and (5.3.89) for a potential second item g into (5.2.4) move one closer to an answer 
to the query: Which item second? After these substitutions, one has 

.2,7 « U'^ (^ - c^)^iyp\m (' - c,)4>[yM)] = p,{v\)a\e* \v\)y\- p\z„e\ vi) ^ fpf^^Y—p^,:/ '   - y.(vi) 

+ G,(v,)c.^(e* IV,) ^1 - p\z,,e\ V,) -^^\-^ + T,(v,) 
for all g where gv^g*'*; (5.3.90) 

which simplifies using steps identical to those of earlier developments, that is from (5.3.23) through (5.3.30), 
to 

lij'a\e* I vl,t/,) 

= CT\e* I vi) ( 1  - p2(Z,,e I vi)(l  - c,) );,.,V^',„,  )   for all g where g^g^'\       (5.3.91) 

In (5.3.91) one now has a computationally convenient solution for the evaluation of each remaining item g. That 
item g for which (5.3.91) is a minimum is, then, the most informative second item given the three-parameter 
normal ogive submodel. Again note that the variance of ability, a^{0* | v',), is a constant in the evaluation of 
all the remaining items. Thus the maximum over the remaining items of the second term within the large 
parentheses in (5.3.91), 

91 



max  p-{Z,.e I vl)(l - c,) i^f^^'i   ,   for all g where g7^g<'>, (5.3.92) 

will yield an identical g to that provided by the full evaluation of (5.3.91) for the remaining items; and, obviously, 
the minimum over the remaining g of the reciprocal of the second term within the large parentheses in (5.3.91), 

"="    *■ *' *"'   for all g where g?^g<'», (5.3.93) 
pHZ,,e\v\)(\ ~ c^){(f>[y^(v\)]V 

will yield the same g as would the full evaluation of (5.3.91) for the remaining items. Either (5.3.92) or (5.3.93) 
may then be used to choose the second item. While the quantities provided by (5.3.91) are more informative 
with respect to each remaining item, either (5.3.92) or (5.3.93) may be used to choose the identical remaining 
item. The use of either will provide a computational savings. 

At this juncture, it may be assumed that the second item has been chosen. In the case of the two-parameter 
submodel, one may have used either (5.3.85), (5.3.86), or (5.3.87) for this purpose. In the case of the three- 
parameter normal ogive submodel, one may have used either (5.3.91), (5.3.92), or (5.3.93) for this purpose. 
This item is subscripted by n within the tailored test. Because this is the second item in the tailored test, its 
subscript takes on the value 2. 

What Is the Estimate of Ability Given the Binary Score on this Second Item? At this point, it is known 
that: (a) Z,(V| ) is in standard score form; (b) 0*{v*) is in its original scale and is distributed about a mean 
fji(0* I vf) with a variance a^(0* \ vf); (c) Z2(vf) and 0*(vf) possess, given the updating assumption, a joint 
bivariate normal distribution; and (d) given this assumption, the property of invariance obtains. Since parallel 
conditions led to the solutions provided in (2.2.23), (2.2.29), (3.2.15), and (3.2.16), one can now interpret these 
equations into the present context as estimators of ability: , ■ 

ix(e* I V|,M2   =   1)   =   /J-(0* I V,)   +   p(Z2,0\  V^)a(e* I V|)M(^2 I V,,M2   =   0 (5.3.94) 

for a correct answer to Item 2 given the two-parameter normal ogive submodel; 

Me* I v,,M2 = 0) = M(0* i V,) + p(Z2,e\ v,)o-(e* | v,) ^(^2 | v,,W2 = 0) (5.3.95) 

for an incorrect answer to Item 2 given the two-parameter normal ogive submodel; 

M(0* I v\,u2 = 1) = pi(0* I vl) + p(Z2,e\ v\)a(e* I v\)p.{Z2 I vl,M2 =  1) (5.3.96) 

for a correct answer to Item 2 given the three-parameter normal ogive submodel; and 

M(0* I vi,M2 = 0) = /u,(0* I vl) + p(Z2,e\ V\)CT{6* I v\)p,{Z2 \ v\,u2 = 0) (5.3.97) 

for an incorrect answer to Item 2 given the three-parameter normal ogive submodel. 
In this context, then, the generalized expression for the estimator of ability may be written as 

Me* ! vtMt) = i^iO* I vf) + p(Z2,e | vt)a{0* I vf)/x(Z2 I vf.[/2*) (5.3.98) 

where multiplying and dividing the rightmost term by cr(Z2 | V] ) yield 

IxiO* I vlU*J = ixiO* I vf) + p(Z2,e I vf) ""^^J j "'^ a{Z2 I vf)MZ2 | vf,f/?).       (5.3.99) 
a(Z2 I V|) 

But after substituting from (5.3.67) into (5.3.99) one has 

■ ixiO* I v*,ut) = M0* I vf) + p(Z2,e I vf) '^^1^*   "l^ PL(Z2 I vtut) (5.3.100) 
(7(Z2  I   V, ) 

where the regression coefficient in the rightmost expression in (5.3.100) now corresponds to that given as the 
equality in the middle of (5.3.53). After a substitution from the rightmost equality of (5.3.67) into (5.3.100) 
one obtains, after some rearrangement, 
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cr(Z2 I V| ) 

+ p(Z2,0| vf)    \^      i   fi(Z2\ vt,Ut) (5.3.101) 
a{Z2 I V, ) 

an equation that is reminiscent of the raw score formula in linear regression. In (5.3.101), the first two terms 
on the right side of the equal sign, after the subtraction is completed, form the intercept. The remaining term 
on this right side is the weighted mean of Z, as originally scaled, given the previous outcome v, and the observed 
outcome U*■ Because of (5.3.101), it is known that for each observed outcome U* given v* that 
/u.(0* I vf .f/*) is the coordinate of 0*{v*) for a point on the line of regression of 0*(Vi ) on Z2(v*) where this 
point's coordinate on Z2(V|) is given by /u.(Z2|v| Mi)- Remember, 0*('V|) is in the original scale of O*. 

Convenient expressions can now be derived for the estimators of ability for the outcome of the encounter 
between the individual and Item 2 given the previous outcome v, . Under the two-parameter normal ogive 
submodel, a substitution from (5.3.68) into (5.3.100) provides 

. /x(0*| v,,M2 = 1) = M©*!",) + P(Z2,0| v,),T(0*| v,)^^^^^ (5.3.102) 

as the estimator of ability when a correct answer is observed; and a substitution from (5.3.69) into (5.3.100) 
yields 

M(e*| v,,M2 = 0) = /x(0*l V,) - p(Z2,e| v,)cr(©*|v,)^^J^^ (5.3.103) 

as the estimator of ability when an incorrect answer is observed. Under the three-parameter normal ogive submodel, 
a substitution from (5.3.70) into (5.3.100) provides 

ti{e*\v\,u2 = 1) = Me*l V,) + p(Z20| vi)cr(0*| vi)(i - C2)^'',';/;'     (5.3.104) 

as the estimator of ability when a correct answer is observed; and a substitution from (5.3.71) into (5.3.100) 
yields 

..     - /a(0* I v;,«2 = 0) = M0* I vi) - p(Z2,0| vi)(7(0* I vD^^J^^ (5.3.105) 

as the estimator of ability when an incorrect answer is observed. In (5.2.102) through (5.3.105) one has expressions 
that are convenient for the computation of ability for either outcome in the encounter between the individual and 
Item 2, given both the two- and three-parameter normal ogive submodels. 

What Is the Variance of Ability Given the Binary Score on the Second Item? In deciding which item to 
choose as the second item in the tailored test, it was necessary to obtain solutions for the variances of ability 
given the realizations of U*. The generalized expression was derived in (5.3.81) and was rendered submodel 
and outcome specific in (5.3.82), (5.3.83), (5.3.88), and (5.3.89). In this context, it is necessary merely to alias 
the subscript of the chosen item ^'^' by n in each of these equations to obtain the appropriate expressions. 

For n equal to 2, the generalized expression for the variance of ability given v, and the realizations of 
U2 is obtained from (5.3.81) through the aliasing of subscripts as 

a-He* I v*,ut) = o-Ho* I vf) { \-p\Z2,e\ vD 
j_ aHZ2\ v*,U*2) 

a\Z2   vD 
(5.3.106) 

One makes certain that the items subscripted ^"' and ^'^' are distinct items. 
* For the two-parameter submodel, where Vi   =   Vi and t/2   —   ^1^ ^nd ^ correct answer to Item 2, 

(«2 =  1), is observed the aliasing of the subscripts in (5.3.82) provides •• ,       • 

a\e^ I v„«2 = 1) = ^\e* I V,) ( 1 - P^(Z2,e I v,) ^^ [ ^^ - y2(v,)| )     (5.3.107) 
\ Pli^x)       [      ^2(»'|) J   / 

as a convenient expression for the calculation of the variance of ability. For the same circumstances and an 
incorrect answer to Item 2, (t<2 = 0), the aliasing of the subscripts in (5.3.83) yields 

2/tt* I m ^,a* I       ^  /'   1 -^,7    a\      ^ '^I^Z^^'l^^  I   '^ill'^'^\)A   ^        ,    W       ,r ^   ,r>o^ a-'O*    V|,«2 = 0) = o-(e*    V,)      1  - p-(Z2,9   V|) \ + 72(»'i) \ (5.3.108) 
V Q2(V\)      [     Q2(V\) J   / 
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as a convenient expression for the calculation of the variance of ability. 
For the three-parameter submodel, where vf = vj and U* = L'2, and a correct answer to Item 2, 

(M2 = 1), is observed the aliasing of the subscripts in (5.3.88) provides 

0-2(0* I V\,U2 =  1) 

as a convenient expression for the calculation of the variance of ability. For the same circumstances and an 
incorrect answer to Item 2, (^2 = 0), the aliasing of the subscripts in (5.3.89) yields 

a\e* I vl,«2 = 0) = aHe* I vl) ( l-p^(Z2,0| vl)fe^ 1^1^ + ,2(vi)| )     (5.3.110) 
\ y2(*'W      I      kTzCl) J   / 

as a convenient expression for the calculation of the variance of ability. 
Can This Process of Choosing and of Estimating Ability and Its Variance Be Extended to a Third 

Item? Given the two-parameter submodel, one begins tailoring the second item in an individual's test with 
fj.(0* I V,), 0-2(0* I V|) and, consequently, o-(0* | v,) as known values. These values represent the second 
estimate of this individual's ability, its variance, and its standard deviation. Also a* and b* are known for all 
g. Given a* and a(0* \ v,), piZg,0 \ v,) can be obtained for the remaining items with subscripts g through the 
use of (5.3.48). Given a*, b*, jxiO* \ Vi), and a^O* \ v,), y^(v,) can be obtained for the remaining items with 
subscript g through the use of (5.3.50); and given 7j,(V|), /'^(v,) and 2j,(v,) can be obtained for the remaining 
items with subscript g through the use of (5.3.57) and (5.3.58), because these remaining items are all eligible 
to be chosen as the second item. The density at "/^(v,) is given by 

* 
<t>ly,(v1)] = i2TT)--'cxp{--5[y,(v*)V} (5.3.111) 

for the remaining items with subscript g because this relationship obtains by definition. Thus, one can use 
(5.3.85), or, consequently, (5.3.86) or (5.3.87) to choose the second item, because the required inputs for these 
equations are known or readily obtainable. What is known or readily obtainable at this juncture is also sufficient 
for the estimation of ability and the variance of ability. Given the chosen item, g''^\ its subscript is aliased by 
n where n equals 2. Then Item 2 is presented to the individual. If this individual's answer to Item 2 is correct, 
(5.3.102) is used to estimate this individual's ability; and (5.3.107) is used to estimate the variance of this 
individual's ability estimate. If this individual's answer to Item 2 is incorrect, (5.3.103) is used to estimate this 
individual's ability, and (5.3.108) is used to estimate the variance of this individual's ability estimate. 

Given the three-parameter submodel, one begins tailoring the second item in an individual's test with 
M(0* I vi), 0-2(0* I vl), and consequently, o-(0* | vj), as known values. These values represent the second 
estimate of this individual's ability, its variance, and its standard deviation. Also, a*, b*, and c* are known 
for all g. Given a* and a{6* \ v\), p(Z^,0\ v\) can be obtained for the remaining items with subscript g through 
the use of (5.3.48). Given a*, b*, /x(0* | vj), and o-2(0* | vj), y^,(v;) can be obtained for the remaining items 
with subscript g through the use of (5.3.50); and given y^(v\), P^(v;) and ^^(v;) can be obtained for the remaining 
items with subscript g through the use of (5.3.59) and (5.3.65), because these remaining items are 
all eligible to be chosen as the second item. Notice that c^(v\) is merely c^, as indicated in (5.3.51), when one 
considers all items eligible to be chosen as the second item. The density at y^Xvl), 4>[yf.{v\)], is obtained for 
the remaining items with subscript g through the use of (5.3.111). Thus one can use (5.3.91) or, consequently, 
(5.3.92) or (5.3.93) to choose the second item because the required inputs for these equations are known or 
readily obtainable. What is known or readily obtainable at this juncture is also sufficient for the estimation of 
ability and the variance of ability. Given the chosen item g^^\ its subscript is aliased by n where n equals 2. 
Then Item 2 is presented to the individual. If this individual's answer is correct, (5.3.104) is used to estimate 
this individual's ability; and (5.3.109) is used to estimate the variance of this individual's ability estimate. If 
this individual's answer to Item 2 is incorrect, (5.3.105) is used to estimate this individual's ability; and (5.3.110) 
is used to estimate the variance of this individual's ability estimate. 

The generalized outcome vector v*_| or Vj now contains v, and one of four possible entries: 
"2|«|2)| = 1. or "2|,;'2i) = 0, MJi^,,,] = I, or MJ|^,2i| = 0, where the bracketed notation in the subscript denotes the 
ability bank subscript of the second chosen item. One now seeks the nth or the third item. The outputs of 
(5.3.102), (5.3.103), (5.3.104), and (5.3.105) may be rendered in generalized form as /x(0* i Vj); and the 
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outputs of (5.3.107), (5.3.108), (5.3.109), and (5.3.110) may be rendered in generalized form as CT^{0* | V*). 

At this juncture /x(0* | v*) and a^(0* \ v*) are known. Of course, also known are a* and b*, in the two- 
parameter case, and a*, b*, and cf in the three-parameter case, for all the items in the ability bank. 

In the following developments it will be established that enough is known for the choice of item, ability 
estimation, and the estimation of the variance of abiHty for a tailored test of three or more items. These 
developments also follow from previous assumptions, those underlying selection theory and the restricted updating 
procedure. 

Under the restricted updating procedure the distribution of 0*{V2), the distribution of 0* resulting from 
incidental selections due to explicit selections on Z, and Z2(vf), is assumed normal. That this assumption provides 
a workable approximation was discussed and illustrated earlier. As a consequence, Zj,{v2), the distribution of 
Zj resulting from incidental selections due to explicit selections on Z, and Zjiv*) is also normal to a workable 
approximation. The reason for the workability of this approximation is that Zy,{v2) is a linear combination of 
0*(v2), the variable of ability, and a homoscedastic random error variable which is normally distributed. The 
random error variables are assumed under the basic model to be independent from item to item. Explicit selections 
on Z, and Z2(vf) have no effect on the homoscedastic random error in Z3. As a result, the joint distribution of 
Zjiv*) and 0*(v2) is bivariate normal to a workable approximation. 

Because bivariate normality is a workable approximation, convenient expressions are now sought for 
p(Z3,0 I v*), the correlation between Z^iv*) and 0*(v*), and ^^(v*), the point of dichotomization on Z^iv*), 
or synonomously, the continuous variable Z^iv*) after its standardization to a mean of zero and variance of 
unity. These expressions will allow a repetition of the application of the selection or rejection analogy in the 
tailored testing context. One will then be considering explicit selection or explicit rejection on Zi^{v2), standardized 
ZT,(V2), where the "cut score" is y3(v2). 

Since the derivations leading to convenient expressions for p(Z^,0 \ Vj) and -/^(Vz) are of considerable 
length and detail, only the principal results are presented here. These derivations may be found in Section 5.4. 
In the course of these derivations, solutions are also found for the parameters a3(v2), item discriminatory power, 
and bjiv*), item difficulty. These parameters are those for Item 3 that are appropriate for 0*(v2), or the 
continuous variable of ability given the generalized outcome vector V2 in standardized form. These parameters 
provide the property of invariance. 

The presented equations apply to any potential third item in the tailored test. At this juncture, there are 
(p — 2) items remaining in the ability bank as possible choices for a third item. 

In deriving a convenient expression for p{Z^,0 \ v*), it is necessary to obtain 03(V2), the item parameter 
of discriminatory power that is appropriate for 0*{v\), or the standardized form of the continuous variable of 
ability subsequent to the outcomes recorded in the generalized vector VT . The solution for this parameter is 
provided by 

a3(v*) = at a(0* \ v*), (5.3.112) 

where a* is the parameter of item discriminatory power appropriate for 0*, as known; and ai0* | V2) is the 
standard deviation of 0* given the generalized outcome vector V2, as provided by the square root of either 
(5.3.107) or (5.3.108) in the case of the two-parameter normal ogive submodel, or of either (5.3.109) or (5.3.110) 
in the case of the three-parameter normal ogive submodel. 

A convenient expression for the correlation between Z3 and 0* given the generalized outcome vector 
V* is provided by 

* «3(»'2 ) ^3 cr{0* I V2 ) 
^(^-^1 ^^' = u^I^MWy = {i + [«3V(0*iv2*)]^p' ^'-'-'''^ 

where a3(v*) is the parameter of item discriminatory power appropriate for 0*{V2), as provided by (5.3.112); 
a* is the parameter of item discriminatory power appropriate for 0*,.as known; and cr(0* | (V2) is the standard 
deviation of 0* given the generalized outcome vector V2 , as provided by the square root of either (5.3.107) or 
(5.3.108) in the case of the two-parameter normal ogive submodel, or of either (5.3.109) or (5.3.110) in the 
case of the three-parameter normal ogive submodel. 

In deriving a convenient expression for 73(V2), it is necessary to obtain a solution for b^{v2), the parameter 

of item difficulty appropriate for 0*(V2), or the continuous variable of ability given the generalized outcome 
vector V2 in standardized form. The solution for this parameter is provided by 
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^3(^2) =  ,Q^ I   *, , (5.3.114) 

where b* is the parameter of item difficulty appropriate for 0*, as known; /tx(0* | v*) is the estimator of ability 
as provided by either (5.3.102) or (5.3.103) in the case of the two-parameter normal ogive submodel, or either 
(5.3.104) or (5.3.105) in the case of the three-parameter normal ogive submodel; and o-(0* | v*) is the standard 
deviation of O* given the generalized outcome vector v*, as provided by the square root of either (5.3.107) or 
(5.3.108) in the case of the two-parameter normal ogive submodel, or of either (5.3.109) or (5.3.110) in the 
case of the three-parameter normal ogive submodel. 

A convenient expression for the point of dichotomization on Z3(v*), the standardized form of the con- 
tinuous variable Z3 given the generalized outcome vector v*, is provided by 

, .. bt - M0* I V2) 
73(^2)    =     ,,     =,= ,-2    ^ 2/Q:H    I        *M5' (5.3.115) 

where a* and b* are the parameters of item discriminatory power and item difficulty, respectively, that are 
appropriate for 0*, as known; /LI(0* | V*) is the estimator of ability, as provided by either (5.3.102) or (5.3.103) 
in the case of the two-parameter normal ogive submodel, or either (5.3.104) or (5.3.105) in the case of the 
three-parameter normal ogive submodel; and (T^(0* | V*) is the variance of O* given the generalized outcome 
vector V2*, as provided by either (5.3.107) or (5.3.108) m the case of the two-parameter normal ogive submodel, 
or either (5.3.109) or (5.3.110) in the case of the three-parameter normal ogive submodel. 

As indicated by the asterisk on the generalized outcome vector v*, the item parameters defined in (5.3.112) 
and (5.3.114) are those for both the two- and three-parameter normal ogive submodels. These respective param- 
eters are defined in an identical manner under both .submodels. In the case of the three-parameter normal ogive 
submodel, the third item parameter appropriate for 0*(v*), the standardized form of the variable of ability given 
the outcome vector Vj, is provided by 

* 
c^ivj) = cj   = C3, (5.3.116) 

which indicates that the lower asymptote of the characteristic curve for Item 3 remains undisturbed by a linear 
transformation of the continuous variable of ability. 

For both submodels, the given item parameters provide the property of invariance. The probability of a 

correct answer to Item 3 remains invariant for corresponding values of 0, 0*, and 0*(v2 ). Under these changes 
in the scale of the continuous variable of ability, the characteristic curve remains invariant. 

At this point, it is evident that the process can be extended. This extension of the process consists of 
choosing the third item and of estimating ability and its variance given the outcome on this chosen item. The 
extension of this process is developed in Chapter 6 for a tailored test of ^, items where ^, is the subscript n on 
the last item in the tailored test for individual /. 

5.4 Mathematical Proofs 

The mathematical formulation that is derived in this section was presented in Section 5.3. The mathematical 
proofs for this formulation as developed in this section may be omitted by the reader who is seeking a general 
understanding. The omission of this section will not result in a loss of continuity. 

The Correlation Between Z2 and O* Given the Outcome v*, p{Z2,0 \ v*) 

In obtaining an explicit solution for p{Z2,0 \ vf), one begins by deriving expressions for p^(Z,,Z2) and 
p^(Zi, 0) for later substitution into (5.3.5). In solving for p2(Z| ,Z2), an explicit solution for o-(Z21 vf) is obtained 
from (5.3.1). This solution yields 

,y I   *■,      p(Z|,Z2)o-(Z2)o-(Zi I vf) 
cr(Z2\v,) =  ,y   „  I    *.    ,„,—, (5.4.1) 

p(Z|,Z2 I V|)a-(Z|) 

where due to prior scaling o-(Z|) and cr(Z2) are both unity, thus providing 
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,7   1*,        p(Z,,Z2)cr(Z, I V,) 
0-(Z2 I  V| )   = 

p(Z|,Z2 I  V|) 

After squaring (5.4.2) and substituting tlie result into (5.3.3), some rearrangement provides 

(T\Z2)[\-P\Z,,Z2)1 = PHZ,,Z2)(THZ, I vf) 
1 

P^(Z|,Z2 I  V|) 

or 

l-p2(Z,,Z2) = p2(Z,,Z2)o-2(Z, I V? 
p2(Z,,Z2 I V,) 

because ^^(Zj) is unity. Dividing botii sides of (5.4.4) by p2(Z|,Z2), one has 

p'(Z,,Z2) 
1 = (THZ, I y*) 

1 

p2(Z,,Z2 I  V|) 

where an exphcit solution for p^(Z|,Z2) yields 

p2(Z,,Z2) =      1+(T2(Z, i vD 
p2(Z|,Z2 I  V|) 

(5.4.2) 

(5.4.3) 

(5.4.4) 

(5.4.5) 

(5.4.6) 

In solving for p-(Z,,0), one obtains an explicit solution for a{9* \ v*) from (5.3.2). This solution yields 

which reduces to 

a(0* I vf) 

o-(0* I vf) 

p(Z,,0)cr(e*)(r(Zi I vf) 
p(Z,,0| vf)(7(Z,)      ' 

p(Z|,e)(7(0*)c7(Z|| vf) 
P(Z,,e| vf) 

(5.4.7) 

(5.4.8) 

because o-(Z|) is unity. After squaring (5.4.8) and substituting the result into (5.3.4), some rearrangement 
provides 

1 
(T\e*)[\-p\Z,,0)\ = pHZ„0)(T\6*)aHZ, I vD pHz„e\v*) -1 

where dividing both sides of this equation by the product o^(0*)p-(Z|,0) yields 

1 
pHZ„0) 

- 1 = a\Z, I vf) 
1 

An explicit solution of (5.4.10) for p^(Z^,Q) now provides 

pHZ„0) =      \+a\Z, I vf) 

p'(z,,0|vr) 

1 

-1 

P^(Z,,0| vf) 

(5.4.9) 

(5.4.10) 

(5.4.11) 

After appropriately substituting the results of (5.4.6) and (5.4.11) into (5.3.5), one obtains 

p(Z2,e I vf) - p(Z|,Z2 I vf)p(Z,,0 I vf) 
Vi-p2(z,,Z2| vf) Vi-p2(z,,e|vf) 

(5.4.12) 

P(Z2,0)   - 1+C72(Z,  I vf) 
P^(Z|,Z2 I  V| ) 

\+a\Z, I vf) 
p'(Z,,e| vf) 

1-    l+cr2(Z, i vf) 
p'(Z,,Z2|vf) 

1 -    1 + aHZ, I vf) 
1 

p2(Z,,e| vf) 
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where the equality on the right side can be simplified. By placing the terms under the radicals on a common 
denominator and subtracting terms in the numerator, one has 

p(Z2,e)~-i \+CT\Z, I vf) 
p-(Z|,Z21 vH 

1+(T2(Z, I vf) 
1 

p\z,,e\vl) 

a^Z, I vf) 
p-(Z|,Zn   I   V'l) 

\+a\Z, I vf) 
I 

p'(Z|,Z2 I V| ) 

cr-(Z| I vj") 
p-(Z,,e| vf) 

+ cr-(Z| I vf) 
1 

p-(2,,0!vf) 

(5.4.13) 

Multiplication of the numerator and denominator of (5.4.13) by the square roots of the denominators under the 
radicals, along with some later rearrangement, leads to 

p(Z2,0)   1+(T2(Z, I vf) 
P^(Z|,Z2 I  V|') 

1 + (72(Z,   I vf) 
1 

p\z„e\vT) 

cj\Z, I vf) 

(5.4.14) 

p2(Z,,Z2|vf) y\p\Z,,e\vX) 

where division of the numerator and denominator by cr{Z^ \ vf), along with some later rearrangement, yields 

1 1 
P(Z2,0) 

CTHZ, I vf)      p2(Z,,Z2 I vf)    J     \a\Z, I vf)      p\Z,.Q\ vf)      ' j a\Z, \ vf) 

P(Z|,Z2  I   V| ) l-p2(Z,,Z2| vf) 
P(Z,,0| vf) l-p2(Z,,0| vf) 

(5.4.15) 

Multiplication of the numerator and denominator in (5.4.15) by p(Z|,Z2 | vf) and p(Z|,0 | vf), along with 
subsequent rearrangement, now leads to 

p(Z2,6)   l-p^(Z,,Z, I vp) 
o^-(Zi! vD 

■p-(z,,e|vf) 
CJHZ, I vf). 

-^ p(Z|,Z3|vf)p(Z,.0|vf) 
cr2(Z, I vf) 

-,      (5.4.16) 

I-p^(Z,,Z, I vf)      /l-p2(Z,,Z2| vf) 

which may be substituted back into (5.4.12) for the expression on the right side of the equality. This substitution 
yields 

p(Z2,e I vf) - p{z,.z^ I vf)p(z,,01 vf) , .      /;^ - 

-p2(z,,Z2| vf)    /i-p2(z,,e|vf) 

p(Z2,0)      l-p2(Z,,Z2|  vf) 
a-(Z| I V| ) 

i~r(Z,,e| vf) 
o-(Z|    V| ) 

(5.4.17) 

p(Zi,Z2| vf)p(Z|,0| vf) 
a\Z, I vf) 

l-p2(Z,,Z2i vf) l-p2(Z,,0| vf) 
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where the multiplication of both sides of this equation by their common denominator yields 

p(Z2,0| vf) - p(Z,,Z2| vf)p(Z,,0| vf) ,-,    . 

= P(Z,0)\ \-p\Z„Z,\vr) 

p(Z|,Z2 I vf)p(Z|,0| V*) 
crHZ, I vf) 

or\Z, I vf) 
l-p2(Z,,0| vf) 1  a-(Z,    V| ) 

(5.4.18) 

Through transposing and combining expressions in (5.4.18), one obtains 

p(Z2,0| vf) = p{Z2,0)    \-p-{Z,,Z^ I vD 

p(Z,,Z2| vf)p(Z,,0|vf) 

1 
cr-(Z| I v, ) 

\-p\Z„0\v*) 

cr\Z, I vf) 

o-(Z| I v,)_ 

(5.4.19) 

which allows one to proceed to a convenient expression for an explicit solution to p(Z2,0 | v,). 
Solving (5.3.1) and (5.3.2) explicitly for p(Z|,Z2 | vf) and p(Z\,9 | vf), respectively, it is known that 

p(Z|,Z2 I vf) = p(Z|,Z2) 
(7(Z2)o-(Zi I vf) 

O-(Z|)(T(Z2 I vf) 

and 

p(Z,,e| vf) = p{Z„0) 
(r(0*)(r(Z, I vf) 

cr(Z,)(7(e* I vf)' 

where o-(Z|) and o-(Z2) are both unity. Thus one may write 

p(Z|,Z2 I vf)   =   p(Z|,Z2) 
o-(Zi I vf) 
0-(Z2 I vf) 

and 

p(Z,,e| vf) = p(Z,,0)cT(0*) 
o-(Zi I vf) 

cr(0* I vf)' 

(5.4.20) 

(5.4.21) 

(5.4.22) 

(5.4.23) 

where squared and unsquared substitutions from (5.4.22) and (5.4.23) into (5.4.19), along with later rearrange- 
ment, lead to 

p(Z2,e| vf)= p(Z2,e)      1 

p(Z|,Z2)p(Z,0)a(0*) 

P'(Z|,Z2) 
CT\Z^ I vf) 

(T\Z, I vf)-l 
pHZ,,0)aHO*) 

0-2(0* I vf) 
^^^(Z, I vf)- 

fr2(Z, I vf)-l 
cr(Z2 I v*)(T(e* I vf) 

Given the basic model, appropriate substitutions from (1.1.21) into (5.4.24) now provide 

P(Z2,e| vf) 

(5.4.24) 

p{Z^,e)  i\ 1 
p2(Z,,0)p2(Z2,e) 

CTHZ2 I V*) 
CT\Z, I vf)-l 

p\z„e)cjHe*) 
a\0* I vf) 

cr\Z, I vf)-l 

p2(Z|,e)p(Z2,0)cr(e*) 
aHZ, I vf)-l (5.4.25) 

(r(Z2 I vf)c7(e* I vf) 

where one will want to substitute for cr^(Z2 \ vf) and ^(Zj | vf). In solving (5.3.3) explicitly for cr^iZj | vf), 
one proceeds by transposition to obtain 
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a\Z, I vf) = a\Z,)[\-p\Z„Z,)] + p\Z„Z, \ vt)aHZ, \ vf), (5.4.26) 

where ar^iZ2) is unity. Thus, squaring (5.4.22) and substituting the explicit solution for p^(Zf,Z2 \ v*) into 
(5.4.26) now allows the writing of 

aHZ^ I vf) = l-p2(Z,,Z2) + p\Z„Z2)aHZ, \ vf); 

which may be rewritten as 

a\Z21 vf) = \+pHz„e)pHZ2,e)[(T\z, \ vf)-i] 

because of (1.1.21). Substituting now from (5.4.28) into (5.4.25), one obtains 

p(Z2,0\vt) 

(5.4.27) 

(5.4.28) 

= p(Z2,e) ^     pHz,,0)pHZ2,e)[aHz,\vt)-i, 
\+p\Z„0)pHZ2,0){a\Z, I vf)-I] J  j a\e* \ v* 

p\z,,e)aHo-) 
[a-^iZf I V|)-l 

+ 

(T<0*) 
PHZ,,O)P(Z2,0) ~~r^^ [a\Z, I vf)-!; 

,  , ■ ■■ ' (5.4.29) 
Vi+p2(Z,,e)p2(Z2,0)[cr2(Z, I vf)-l] 

where placing the terms in the first braces under the first radical to the right of the equal sign over a common 
denominator, subtracting in the numerator, and multiplying the resulting expression by the other expression in 
braces under the same radical, yields 

p{Z2,6\v*) = piZ2,e) 
a^{0* I vf) 

\+p\z„e)pHZ2,e)[aHz,\vt)-i] 

p\z„e)p{Z2,e) -^\ [cr2(z, i vf)-1] 

Vl+p2(Z,,0)p2(Z2,6>)[cr2(Z, I vf)-l]~' 
(5.4.30) 

In (5.4.30) there are four occurrences of the expression {cr^(Z^ \ v*)- 1]. As a result, one will want to solve 
explicitly for this expression in order to provide further simplification to (5.4.30) through substitution. One 
begins by rearranging (5.3.4) to obtain 

a\e* I vf) = a\e*) - p\z,,e)aHe*) + p\z,,e\ v*)cT\e* \ vf) (5.4.31) 

where squared substitution from (5.4.23) into (5.4.31) allows the writing of 

CT\0* I vf) = a\e*) - p\Z„0)a\e*) + p\Z„e)cT\0*)a\Z, I vf). (5.4.32) 

Some transposing of (5.4.32), along with subsequent rearrangement, leads to 

p\z„e)(j\e*)[a\z^\v*)-\] = cT\e*\v*,)~a\e*), (5.4.33) 

where division of both sides of the equality by p^(Z^,Q)a\6*) yields 

0-2(0* I vf)-o-2(e*) [aHZ, I vf)-l] 
p2(Z,, 0)0-2(0*)     ' (5.4.34) 

the sought solution. After the four substitutions from (5.4.34) into (5.4.30), the cancellation of several terms 
and some division lead to 

p(Z2,0|vf) = p{Z2,e) 

o-(0*) 
p(^2,e)^(e*l *) 

l+p2(Z2,0) 

a-HO* I vf) 
0-2(0*) 

" 0-2(0*  I  vf)   ^ 

0-2(0*) 

1 

(5.4.35) 
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where the numerator under the first radical on the right side of the equal sign in (5.4.35) can be moved from 
under the radical after subtraction. One then has 

p(Z2,e) 
piZ2,0\v*) 

o-(0* I vf) 
P(Z2,0) ^(0, I   * 

+ 

0-^(0* I vf) 
0-2(0*) 

+pHZ2,e) 
aH0* I vf) 

0-2(0*) 
1 \+pHZ2,e) 

aHO* I vf) 
0-2(0*) 

(5.4.36) 

1 

where the denominators on the right side of the equality are identical, thus permitting the addition of the 
numerators. After multiplying through the brackets on the second numerator on the right side of the equal sign 
in (5.4.36), the addition of the numerators yields 

„  ;-        ,. p(Z„0)°-^^*'-'^ 
■   ' /7     £1   I       *N O-(0*) 

.: ... P(Z2,0|   V|)    =   -^=^= 

-PHZ2,0) 
aHO* I vf) 

(5.4.37) 

0-2(0*) 

where unsquared and squared substitutions from (2.3.126) into (5.4.37) allow one to write 

_ a* o-(0* I vf) 

p(Z2,0| vf) Vl + [a| o-(0*)]2 

[a^o-je* I vf)]2 - [a*(T(0*)]2 

l + [a*o-(0*)]2 

(5.4.38) 

After placing the expression under the radical in the lower denominator of (5.4.38) on a common denominator, 
the subtraction of terms provides 

at(r(0* I vf) 

p(Z„0|vf)   =   -^J«2V(0*)P 

1-f [a2*o-(0* I vf]2 
l + [a2*o-(0*)]2 

(5.4.39) 

where multiplication of the numerator and denominator by their common denominator yields the result 

p(Z2,0|vf)= «2V(0*|vf) 
Vl + [a*o-(0* I vf)]2' 

By definition, one has 

P(Z2,0|   vf) aiiv*) 

^l + Mvf)] *M2 

(5.4.40) 

(5.4.41) 

where a2(vf) is appropriate for 0*(vf) after its standardization to a mean of zero and a variance of unity. Upon 
squaring (5.4.41), one obtains 

p2(Z2,0|  vf)   = [a2(»'i)] 
*M2 

l + [fl2(vf)]2' 

where the substitution of the squared result of (5.4.40), after transposition, yields 

[«2(vf)]2 la*a{9* I vf)J^ 

(5.4.42) 

(5.4.43) l + Mvf)]^       l + [a2V(0*| vf)j2- ,. 

Upon clearing the denominators in (5.4.43), one has 

Mvf)]2 + [a2(vf)]2 [ataiO* \ vf)]^ = [fl2V(0* | vf)]^ + [a^ivt)]' [a^aiO* \ vf)]2,     (5.4.44) 

where subtraction of the common expressions on both sides of the equality yields 
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[a2(»'f)]' = [at(T{0* I v*)]\ (5.4.45) 

Taking the square root of (5.4.45) provides 

a.iv*) = a*a{0* \ vf), (5.4.46) 

indicating that ajivt)^ appropriate for 0*(vi) or 0*(Vi) after its standardization to a mean of zero and variance 
of unity, is obtained by the multiplication of two knowns, Oj and ar(0* \ v,). Thus (5.4.40) provides a convenient 
expression for p{Z2,0 | v,), which was one of the two solutions sought. 

The Point of Dichotomization on Standardized Z2 Given tlie Outcome v*^, y2(»^i) 

The other solution one now seeks is a convenient expression for ")'2(''i)' the point of dichotomization on 
Zjiv*), or, synonomously, Z2(V|) after its standardization to a mean of zero and a variance of unity. In obtaining 
this solution, one first defines the rescaling of 0* for which the parameter a2(*'i) is appropriate. This definition 
will lead to a solution for ^2(*'i )• Fo"" completeness, Cjiv^) will then be defined. At this juncture, both 
p{Z2,0 I V*) and b2{v*) will be known. Consequently, Jiivi ) will be known, because ■y2(''i ) is by definition 
merely the product of p{Z2,01 v,) and b2iVf). After obtaining this solution, the important property of invariance 
will be evaluated. 

After incidental selection on 0* due to explicit selection on Z,, 0* can be standardized to a mean of 
zero and a variance of unity. This standardization is accomplished in the usual manner through 

-   *     e*-ii(0* I vf) ...    ■ 
cr{U* I Vi ) 

where 0*{v*) is the continuous variable of ability for which the parameter 6(2(^1) is appropriate. The appropriate 
parameter ^2(*'i) is obtained through 

biiv*) =    '   ,^, I   L'   , • (5.4.48) 

where the expression on the right side of the equality resembles the similarly positioned expression in (5.4.47). 
This resemblance occurs because, consistent with the definition of the difficulty parameter, b2(v*) is rendered 
in the standard scale of ability, in this case that of 0*(V| ). The parameters a2ivi ) and &2(*'i ) are, as usual, 
defined identically in both submodels. For the three-parameter normal ogive submodel, one has 

.     C2(vf) = c* = C2 (5.4.49) 

again, as in the case of (3.3.65), because a change in the scale of ability leaves the lower asymptote of the 
regression of a binary, multiple-choice item on ability unchanged. 

Since ')'2(*'f )> the point of dichotomization on Z2(v,), is by definition 

y2(vt) = p{Z2,0\vT)b2{vt), (5.4.50) 

substitutions from (5.4.40) and (5.4.48) into (5.4.50), along with a cancellation of terms and divisions of the 
numerator and denominator by Oj - now yields 

y2(*'i ) = ,, *..-, ^—2,a* I  ■*M 5' (5.4.51) 

the solution that was sought. In (5.4.51) one has a convenient expression for the point of dichotomization on 
Z2(vf) where the required inputs are known. 

The Property of Invariance 

Remember, the property of invariance pertains to the probability of passing item g. This probability must 
remain invariant for any particular level, rather than numerical value, of the continuous variable of ability under 
changes in its scale. Invariance is obtained by simple transformations of the item parameters given a change in 
the scale of the continuous variable of ability. Earlier, in connection (2.3.122), the property of invariance was 
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discussed in connection with an arbitrary prescription for the scale of the continuous variable of ability. In this 
context, the discussion will be extended to include a change in the scale of the continuous variable of ability 
resulting from the standardization of G* subsequent to the incidental selection on O* imposed by explicit selection 
on Z|. Extending equation (2.3.122), invariance requires the result 

y2(^) = JiiO") = 72(0*(vf)J, (5.4.52) 

where the second item is potentially any one of the remaining (/?- 1) unused items in the ability bank. The point 
ofdichotomization y,!^* (»'*)1 would be the lower limit of integration for the standardized conditional distribution 
of Z2(v*) given 0*(v'^), where the integral yields the probability of either producing or recognizing a correct 
answer to the second item in the tailored test. In this context, yiAd^iv't)] operates as did 72(0) in the context 
of (2.1.15). When the level of ability is arbitrarily fixed, y2[0*(vf)] must equal y^Jd) even though the particular 
numerical values 9*(v*) and 6 are unequal because of intervening transformations on the scale of the continuous 
variable of ability. The equality yields an invariant probability of producing or recognizing a correct answer at 
the arbitrarily fixed level of ability. Thus the probabilities yielding the item characteristic curve remain undisturbed 
when the equality in (5.4.52) is maintained. Given invariance, y2[()*{v't)] is defined by 

.,_   , 72[e*(vf)] =   -fl2(vf)[r(vf)-Mvf)l (5.4.53) 

under the necessary condition of equality asserted in (5.4.52). Substitutions from (2.1.15), (2.3.121), and (5.4.53) 
into (5.4.52) yield 

-0.(0 - bj) =   -atiO* - bt) =  -fl2(vf) [e*{v*) - b.(v*)], (5.4.54) 

where substitutions from (5.4.46), (5.4.47), and (5.4.48) into the rightmost member of the equality allow one 
to write 

-a2(0 - b.) =  -at(e* - b*_) =  ~aUe* - b*). (5.4.55) 

Subsequent substitutions from (2.3.118), (2.3.119), and (2.3.120) into (5.4.55) provide proof of the necessary 
condition 

-02(0 - bj) =  -112(6 - b2) =   -02(6 - i-,). (5.4.56) 

which demonstrates the property of invariance and the appropriateness of the parameters a2(v*) and biiv*) for 
transformed ability 0*(vf). 

Some Consequences of the Submodels and the Updating Assumption 

The Probabilities for the Realizations of U* Given the Generalized Outcome vf. In earlier developments 
explicit selection on the continuous variable Z^ was considered when Z,, was in standard score form and 7, was 
the "cut score" or point ofdichotomization on Z^. Here one is considering explicit selection on the standardized 
continuous variable Z2(vf). The standardized values of variable Z2(vf) are defined by 

j. , *,       ^2-/^(^2 I vf) 
^2(Vi) =  ,y I   *,    , (5.4.57) 

where Z2{v'^), like Z^, because of the updating assumption, is distributed bivariate normally with respect to the 
continuous variable of ability, scaled as either O, 6*, 0*(vf), or 0*(v*). 

Under the two-parameter normal ogive submodel and the updating assumption: 

The probability of a correct answer to Item 2 given the outcome v,, Pr(M-, =  1 | v,), is 
designated as PjC*';)- This probability by definition is 

Pr(M2 =  1 I V,) = P2(vO = 01^2(V|)J*(V|)] d0*{vt) d'Uv,)      (5.4.58) 

an equation which may be viewed as resulting from the substitutions of y2(vi) for y^, of ^2(^1) 
for C^, and of 0*(v,) for 0 into (2.3.26). Since ^.(vi), ^2(^1), ^*(V|), and, consequently, /'2(V|) 
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have respective definitions that correspond to those of y^,, f^„ 6, and P^ in this earlier context, 
the appropriate substitution of yjC^'i) and  liv,) into the earlier solution for P^„ (2.3.31), provides 

PrK =   1 I V,) = PiivO =  I        (27r)-5exp{-.5[^2(v,)]^}rf^2(v,) 
-'■>'2<''l' 

-V'l' 
(27r)-5exp{-.5[^2(v,)]'}^^,.(v,) 

= m-yiiv,)] (5.4.59) 

as the probability of a correct answer given these circumstances. In (5.4.59), (P[- 72(^1)] is the 
cumulative normal distribution function evaluated for the interval on Z2(V|) extending from negative 
infinity to negative y2iv\)- 

The probability of an incorrect answer to Item 2, given the outcome v,, Pr(«2 = 0 | v,), 
is designated as Qjivi)- This probability by definition is 

Pr(«2 = 0 I V,) = e2(v,) = |_V /_ </'[^2(v,), ^*(v,)] de*(vO dUv,),     (5.4.60) 

an equation which may be viewed as resulting from the substitutions of jiiv^) for y^, of div^) 
for 4, and of 0*(v,) for 9 into (2.3.32). Since 72(^1), ^2(^1), ^*(V|), and, consequently, Qjiv^) 
have respective definitions that correspond to those of y^, Cg, 6, and Qg in this earlier context, 
the appropriate substitutions of ■y2(»'i) and ^2(^1) into the earlier solution for Q^, (2.3.35), provides 

Pr(M2 = Olv,) = Qiivi) = J V (27r)-5exp{-.5[^2(vi)]'}^^2(vi)= *[y2(vi)] 

(5.4.61) 

as the probability of an incorrect answer to Item 2 given these circumstances. In (5.4.61), <P[y2{vi)] 
is the cumulative normal distribution function evaluated for the interval on Z2(V|) extending from 
negative infinity to yiivO- 

Under the three-parameter normal ogive submodel and the updating assumption: 

The probability of a correct answer to Item 2 given the outcome v\, Pr(M2 =  1 | v',), is 
designated as Pi(vi). This probability by definition is 

Pr(M2 = 1 I v',) = P2iv\) 

I       <^[^2(vi),  ^*(vi)] dd*(v\) dUv\) 

+ C2 \''^\ ^ <^[^2(vi), 0*(vi)] de*(v\) dUv\) (5.4.62) 

an equation which may be viewed as resulting from the substitution of -)'2(»'i) for Ts- ^^ ^2(«'i) 
for f^, of e*(vi) fore, and of C2 for c^ into (3.3.1). Since y2(v'i),^2(»'i)^*(vi),<:-2, and, consequently, 
P'2{v\) have respective definitions that correspondto those of jg, 4. ^. Cg and P'g in this earlier 
context, the appropriate substitutions of y2(*'i)> liW^ and Cj into the earlier solution for P^, 
(3.3.5), provides 

Pr(M2 =  1 I vi) = P2(V\) 

= C2 + (1 - C2) f       (27r)-5exp{-.5[^2(vl)]'}^^2(vi) 

= C2 + (1 - C2) \ I ' (2i7)- 5 exp{-.5[^2(vi)]'} dUv\) 

= C2 + (i - C2) ^[-r2(vi)] (5.4.63) 
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as the probability of a correct answer given these circumstances. In (5.4.63), ^[ - jjivl)] is the 
cumulative normal distribution function evaluated for the interval on Z,(vi) extending from negative   ' 
infinity to negative 'y2(''i)- 

The probability of an incorrect answer to Item 2 given the outcome v\, Pr(«2 = 0 | vj), 
is designated as Q2{v'\)- This probability by definition is 

Pr(u2 = 0 I vl) = Q2{v\) = (1  - C2)J_"^   J_^ <A[^2(vl),0*(vi)] de*(v\) dUv',)     (5.4.64) 

an equationwhich may be viewed as resulting from the substitutions of jjiv'x) for y^, of ^2(''i) 
for (,, of e*{v\) for 6, and of C2 for c^ into (3.3.6). Since yzCvl), ^2(vl), 6*{v\), C2, and, 
consequently, Q2{v\) have respective definitions that correspond to those of y^, l^, 6, c^, and 
Q'g in this earlier context, the appropriate substitutions of 72(»'i). l2(v'\), and cj into the earlier 
solution for 2j,, (3.3.8), provides 

Pr(«2 = 0 I vi) = QjCv'i) 

= (1  - c-2)J_^   (27r)--5exp{-.5[^2(vl)]^}42(v;) 

= (1 - C2) *[r2(vi)] (5.4,65) 

as the probability of an incorrect answer to Item 2 given these circumstances. In (5.4.65), 
^[Jiivd] is the cumulative normal distribution function evaluated for the interval of ^(v;) 
extending from negative infinity to ')'2(''i)- 

The Means of Z2 (vf) and Z {v*)for the Realizations ofUt. At this juncture, the Z2(vf) are standardized 
variables which, by assumption, and like Z^ in a previous setting, are distributed bivariate normally with respect 
to the continuous variable of ability. The previous developments obtained under identical circumstances can thus 
be interpreted into the present context to provide the solutions for the means of the Zjiv*). In order to obtain 
the solutions for the means of the continuous variables Z2{v*) whose mean deviate values, Cii'^*), are defined 
by .     . 

tiiv*) = C2-l^iZ2\v*), (5.4.66) 

some further development is required. 
Given the two-parameter normal ogive submodel, the updating assumption, and the previous outcome 

v.: 

The mean of Z2(V|) when a correct answer to Item 2 is observed, pi(Z2 | V|,M2 =  1), is 
by definition 

fXiZn I  V,,M2   =    1)   =   "^(.Zs I V|,M2   =    1) 

Uv^)4>*\i2iv^)Mv^)]de*{v,)dl2(v,)      (5.4.67) 

where, in this context, the joint density function </)*[^2(»'i).^*(V|)] is given by 

VU2iv.)Mv.)\ ^ '^[^^(;';'^;(-')i. (5.4.68) 

Equations (5.4.67) and (5.4.68) may be viewed as resulting from equations (2.3.36) and (2.3.37) 
after substitutions of y2(v,) for y^, ^2(V|) for ^,„ 0*(v,) for 6, and fjCv,) for P^. Since yjCv,), 
^2(V|), e*(V|),f2(vi),and,consequently,jL(.(Z2|v|,M2 = 1) have respective definitions that correspond 
to those of y^, ^^, d, P^, and ^(Z^ I «« = 1) in this earlier context, one can then interpret the 
earlier solution for fiiZ^ \ u^ = 1), (2.3.48), into the present context as 

MZ2|v„«2=l) = ^^ (5.4.69) 
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which provides the mean of ZjCvj) when a correct answer to a free-response Item 2 is observed. 
Notice that (5.4.67) may be rewritten as 

/A(Z2 I  V|,M2   =    1)   =   —=-^  /U,(Z2 I  V|,M2   =    1) 

C7(Z2 I  V|) 

= -T^V- ( ^2(v,)c/.*[^2(vi),0*(v,)]rfe*(v,)^^2(v,)     (5.4.70) 

because of (5.4.57) and (5.4.66). In the equality involving a double integral in (5.4.70), a constant 
with respect to the integration, the reciprocal of cr(Z2 | v,), has been moved outside of this in- 
tegral. This operation renders the expected value obtained through integration from that of 
lxiZ2 I V|,M2 = 1) in (5.4.67) to that of /x(Z2 | V|,((2 = 0 in (5.4.70). Because of (5.4.69) and 
(5.4.70), one may then write 

yU,(Z2 I V|,tt2  =   1)  =  0-(Z2 I V|)/LA(Z2 [ V,,H2  =   1)  =  (^(Zj | V,) '    ' (5.4.71) 
"2'*'l/ 

as the mean of Z2(V|) when a correct answer to Item 2 is observed. But from (5.4.66) and (5.4.70) 
it is known that 

jU,(Z2 I  V,,M2   =    1)   =   '^(Z2J  V|,i<2   =    •) ■■• ,.      \- ■'■'•■■■    ^       " ^.■■; ■ 

[^2-M(^2 I v,)l (/)*[^2('',)i*(v,)] dOHvO dUv,)    (5.4.72) 

which involves obtaining the expected value of a continuous variable in mean deviate form. 
Equation (5.4.72) may also be written as 

jU.(Z2 I  V|,M2   =    1) 

^2**[^2(V,)i*(V,)]d0*(V,)42(V,) ■,- ,.       ,. 

^J.(Z2\v,)<i)*[Uv,),eHv,)]de■*■{v,)dUv,)    (5.4.73) 
y,(V|) J -^ 

an equation involving a difference between double integrals. In (5.4.73) the double integral where 
the integrand is a product of [,2 is by definition ?o(Z2 | v^,U2 = 1) or /Lt(Z2 | V|,M2 = 1). Thus, 
one may write 

M-^2 I »'i,W2 =  1) = M(^2 I V,,«2 =  1) (5.4.74) 

-M(Z2   V,) (/)*[^2(v,),0*(v,)] d0Hv>) d^vx) 

where the constant with respect to the integration, /x(Z2 j v,), has been written outside of the 
double integral. After a substitution from (5.4.68) into (5.4.74), one has 

/A(Z2 I  V|,M2   =    1)   =   M(^2 i  »'l.«2   =1) 

- ^^5' f        I      <t>[Uv,)Mvx)]de*{v,)dUv,)     (5.4.75) 
"2(^1) •'■>'2<''l'   ■'^" • ■ 

or merely 

/X(Z2 I  V|,M2   =    1)   =   /A(Z2 I  V|,M2   =    1)   -   At(Z2 I  V|) (5.4.76) 

because of (5.4.58). In (5.4.76), /x(Z2 | V|,M2 =  0 is the mean of the continuous variable Z2 as 
originally scaled subsequent to the effects of incidental selection resulting from explicit selection 

106 



on the continuous variable Z, and of explicit selection on the continuous variable Zj given the 
earlier incidental selection; and /^(Zj | v,) is the mean of the continuous variable Zj given the 
incidental selection resulting from explicit selection on the continuous variable Z,. 

The mean of ZzCv,) when an incorrect answer to Item 2 is observed, /u-iZj \ v,,u^ = 0), 
is by definition 

MZ. I  V,,M2   =   0)   =   %{Z2 I V|,M2   =   0) 

^2(v,) (A'[^2(vi),0*(v,)] dd*{v,) dUvO,      (5.4.77) 

where, in this context, the joint density function, <^'[^2(t'i).^*(>'i)]> is given by 

Equations (5.4.77) and (5.4.78) maybe viewed as resulting from equations (2.3.49) and (2.3.50) 
after substitutions of jjiv^) for y^, ^2(V|) for ^^, 0*(v,) for 6, and Qjiv^) for Q^. Since 72(»'i). 
^2(*'i), 9*(V|), Qiiv^), and, consequently, ^t(Z2 | V,,M2 = 0) have respective definitions that 
correspond to those of y^, (^,, 0, g^, and /x(Z^ | «^ = 0) in this earlier context, one can then 
interpret the earlier solution for /x(Z^ | u^ = 0), (2.3.59), into the present context as 

; ■ M(Z2 I v„«2 = 0) =  -^^ (5.4.79) 

which provides the mean of Z2(V|) when an incorrect answer to free-response Item 2 is observed. 
Notice that (5.4.77) may be rewritten as 

IX(Z2 I V|,i<2   =   0)   =   —-—  p. (Z, i  V|,M2   =   0) 
0-(Z2 I V| ) 

=    ^„'|       %(Z2\v„u, = 0) 
0-(Z2 I V|) 

=    ,y \    A ^2(v,)<^'[^2(v,),e*(«',)]rf9*(v,)^^2(v,)     (5.4.80) 

because of (5.4.57) and (5^4.66). This operation renders the expected value obtained through 
integration from that of p^iZ^ \ v,,^, = 0) in (5.4.77) to that of p-iZ^ \ V,,M2 = 0) in (5.4.80). 
Because of (5.4.79) and (5.4.80), one may write 

p{Zn I V|,M2 = 0) = o-(Z2 I V|)At(Z. I v,,«2 = 0) =  -cr(Z. I V,) '^^''"^^"'^^     (5.4.81) 

as the mean of Z2(V|) when an incorrect answer to Item 2 is observed. But from (5.4.66) and 
(5.4.80) it is known that 

At(Z2  I   V,,M2   =   0)   =   'g(Z2  I   V|,M2   =   0) 

= l^2-M^2l V,)] (/)n^2(vi),0*(v,)]rf0*(v,)^^2(«'i),     (5.4.82) 
,.' j —^   j--j~~ 

which involves obtaining the expected value of a continous variable in mean deviate form. Equation 
(5.4.82) may also be written as 

p{Z2 I V,,M2   =   0) 

J_"^   J_^ piZ. I V,) (^"'[^2(v,),0*(V|)] d0*(vO dUv,),     (5.4.83) 
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an equation involving a difference between double integrals. In (5.4.83), the double integral where 
the integrand is a product of Ci is by definition '^(Z, i V,,M2 = 0), or ^t(Z2 | v,,«2 = 0). Thus, 
one may write 

/u,(Z2 I V|,i<2 = 0) = /j-CZ, I V|,i(2 = 0) • . ■ ■    . 

-MCZ, I V|) J'J J_^ (^•K2(v,)i*(v,)] de*(v,) dUv,),     (5.4.84) 

where the constant with respect to the integration, ;u.(Z2 | v,), has been written outside of the 
double integral. After a substitution from (5.4.78) into (5.4.84), one has 

^l(Z2  I   V|,M2   =   0)   =   /^(ZT  I   V|,«2   =   0) 

M(^2  I   V,)    r^ 
„,   ,     ,       ,      <^[f2(v,),0*(v,)]^0*(V|)^^2(V|),     (5.4.85) 
Q2(V|)     J-- J--^ 

or merely ,. ;.,.,' '  -  . 

.      . ■       IX{Z2 I V|,M2  =  0)   =   IX(Z, I V,,W2  =  0)   -   jLl(Z2 | v,),     ,. ■' (5.4.86) 

because of (5.4.60). In (5.4.86), ^liZj \ V|,«2 = 0) is the mean of the continuous variable Z2 as 
originally scaled subsequent to the effects of incidental selection resulting from explicit selection 
on the continuous variable Z, and of explicit selection on the continuous variable Z2 given the 
earlier incidental selection; and /LA(Z2 | V|) is the mean of the continuous variable Z2 given the 
incidental selection resulting from explicit selection on the continuous variable Z,. 

Given the three-parameter normal ogive submodel, the updating assumption, and the previous outcome 

The mean of Z2(v',) when a correct answer to Item 2 is observed, /^(Z, | vj, M2 =  1), is 
by definition 

ya(Z2 I  Vi,«2   =    I)   =   ^(Z2 I  V1,M2   =1) 

iiivd 4>*'[Uv\)Mv\)]deHv\) dUv\) 
oc /"oc 

y,|^l 

+ r2 ^2(vl) </'*'[^2(vi),e*(vl)]f/e*(vl) J^2(vl),     (5.4.87) 

where the joint density function <^*'[^2(''i)' ^*(>'l)] is given by 

(/)*'[f2(vi),e*(vl)l = ^^^^^-~—^. ,      • (5.4.88) 

Equations (5.4.87) and (5.4.88) may be viewed as resulting from equations (3.3.11) and (3.3.12) 
after substitutions of 72(»'i) for y^, liW for (^,, 6*{v\) for d, P2(y'\) for P',, and Cj for c^. Since 
■y2(vi), ^2(*''i)-^*(*'i)' Pii^d^ ^2, and, consequently, /LI(Z2 | V\,U2 = I) have respective definitions 
that correspond to those of y^,, ^^,, 6, P^,, c\,, and ^i(Z^, | u'^ = I) in this earlier context, one can 
then interpret the earlier solution for p.{Z^ \ u'^ =  1), (3.3.21), into the present context as 

lx(Z. I vl,«; =  I) = (1  - c.) ^^^7^, (5.4.89) 

which provides the mean of Z2(v|) when a correct answer to a multiple-choice Item 2 is observed. 
Notice that (5.4.87) may be written as 
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IX{Z2 I Vl,«2   =    1)   =       ,7   I     ,, M(^2 I  V\,U2   =    1)   =        ,y   I     ., ^(^2 I V;,«2   =    0 
Cr(Z2 I  Vi) 0-(Z2 I  V|) 

' '     ' ' ^2(vl)0*'[^2(vl),0*(vl)]rf0*(vl)rf^2(vl) 
cr(Z2 I vi 

+ C2]   ^   ]   ^C2(v\)<P*'U2(v\),e*(v\)\de*{v\)d^2{v\)\, (5.4,90) 

because of (5.4.57) and (5.4.66). In the equality involving the two double integrals in (5.4.90), 
a constant with respect to the integration, the reciprocal of cr{Z2 \ v',), has been moved outside 
of these double integrals. This operation renders the expected value obtained through the composite 
of double integrals from that of ^t(Z2 | v\,u'2 - 1) in (5.4.87) to that of [1.(2,2 I ''i'"2 = 0 in 
(5.4.90). Because of (5.4.89) and (5.4.90) one may then write 

MZ2 I vi,«2 = 1) = ^{^2 I vl);a(Z2 I vl,«2 = D = ^^(^2 i vl)(l " ^2) ^^^^    (5.4.91) 

as the mean of Z2(vi) when a correct answer to Item 2 is observed. But from (5.4.66) and (5.4.90), 
it is known that 

/Lt(Z2  I   V\,U'2   =    1)   =   "^(Zj  I   Vj,«2   =    1) 

[f2-M^21 vi)] </'*'[^2(vi),e*(vi)] d¥{y\) dUv'O 

■y-,(v ) 

+ C2 I      I    [^2-M221 Vi)] <^*'l6(vi),e*(vi)] ^e*(vi) di2(y\), 

(5.4.92) 

which involves the taking of an expected value of a continuous variable in mean deviate form. 
Equation (5.4.92) may also be written as ^ 

/Lt(Z2 I vi,M2   =1) : ■      .    , 

f2<^*'[^2(vi),^*(vi)]^e*(V,)^^2(vi)      ' 

- I    I   [ji{Z2\v[)(t>*'[l2(v\),e*(yTnde*(v\)di2{y\) 

+   C,   r'''f       ^2<^*'[^2(vi),^*(vi)]^0*(vi)42(vl) 
- oc    J — cc 

- c„ r"' l'     ^^2 I Vi) </'*'[^2(vi), ^*(vi)] de*{v\) dUv',), (5.4.93) 
-a;   J — 'x 

an equation involving four double integrals. In (5.4.93), the sum of the two double integrals where 
the integrand is a product of ^2 is by definition ^^(Z2 | vi,«, = 1) or /x(Z2 | vi,wi = 1). Thus, 
one may write 

fJi{Z2 I vi,«2 =  1) = /"•(■^2 i vi,W2 =  ') 

-M^2|vi)|     I    <p*'[l2(y\),e*iv\)]de*(v\)di2(v\) 

-C2M(^2l vi) J_   J_^(/.*'[^2(vi),e*(vi)]c/e*(vi) J^2(vi),     (5.4.94) 

where the constant with respect to the integration, ^i(Z2 | vi), has been written outside of the 
double integrals. After a substitution from (5.4.88) into (5.4.94), one has, after some rearrange- 
ment, 
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/X(Z2 I V\,U2   =   1) 

H(Z2 I vi 
(l>U2(yi),eHyi)] de*{v\) dl2{v\) 

+ C2 |_  (   ^<^[^2(vi), 0*(vi)]£/0*(v;)^^2(v,) ^ (5.4.95) 

which may be written as 

^(^2 i vl.MJ = 1) = M(22 I v\,U2 = 1)-M(-?2 I vl), (5.4.96) 

after a substitution from (5.4.62) for the expression within the braces in (5.4.95). In (5.4.96), 
/^(Zj I v\,u'2 = 1) is the mean of the continuous variable Z, as originally scaled subsequent to 
the effects of incidental selection resulting from explicit selection on the continuous variable Z, 
and of explicit selection on the continuous variable Zj given the earlier incidental selection; and 
/x(Z2 I vj) is the mean of Z2 given the incidental selection resulting from explicit selection on the 
continuous variable Z\. 

The mean of Z2(v|) when an incorrect answer to Item 2 is observed, ju,(Z2 | v\,u'2 = 0), 
is by definition 

/i.(Z2 I vi,«2 = 0) = %{Z2 I vj,«2 = 0) 

ry,(v|)    roc 

= (I  - C2) J_'^   J_^ ^2(vl) 0"[^2(vi),0*(vl)] ^r(vi) dUv\),     (5.4.97) 

where, in this context, the joint density function, 4>"[i2(v\),'9*{v\)], is given by 

t:2(*' 1) 

Equations (5.4.97) and (5.4.98) may be viewed as resulting from equations (3.3.22) and (3.3.23) 
after substitutions of 72(^1) for y,,, ^2(v;) for Cg, '9*(v\) for d, Q2{v\) for Q'^, and C2 for c^,. Since 
'>'2(vl), Ijiv'i), 0*{v\), Q2{v'\), Q2(v\), C2, and, consequently, /^(Z, i V;,M2 = 0) have respective 
definitions that correspond to those of y^,, i^^, 6, Q'^, Q^, c^, and fx.{Z^, \ U2 = 0) in this earlier 
context, one can then interpret the earlier solution for /x(Z^ | u'^ = 0), (3.3.31), into the present 
context as 

M(Z2|v;,«2 = 0)=  -^J^, (5.4.99) 

which provides the mean of Z2(v'|) when an incorrect answer to a multiple-choice Item 2 is 
observed. 

Notice that (5.4.97) may be written as 

/i.(Z2 I V\,U2   =  0) 

;U.(Z2 I V\,U2   =   0) 

-'g(Z2 I  V1,M2   =   0) 

,7 I  ,, I      I    ayi)(l}"[t2iy\),0Hv[)]de*(v\)dUv\)       (5.4.100) 

because of (5.4.57) and (5.4.66). In the equality involving the double integral, a constant with 
respect to the integration, the reciprocal of cr(Z2 | vj), has been moved outside the double integral. 
This operation renders the expected value obtained as the product of (1   - Q) and the double 

no 

cr(Z2| vi) 

1 

cr(Z2| vi) 

(1  - Cl) 
y,<«',)    r^ 



integral from that of fiiZj \ v\,u'2 = 0) in (5.4.97) to that of /A(Z2 | V\,U2 = 0) in (5.4.100). 
Because of (5.4.99) and (5.4.100), one may then write 

^(^2 I vi,M2 = 0) = a{Z2 I vi)M(^2 I v\,U2 = 0) =  -a{Z2 I vl) ^^^y^    (5.4.101) 

as the mean of Z2{v\) when an incorrect answer to Item 2 is observed. But from (5.4.66) and 
(5.4.100) it is known that 

IJ-iZ, I V|,K2  = 0)  = %(Z2 I V\,U2  = 0) ■■. ■ • 

(1   -   C2)   I I [^2-M(^2 I vl)]  </'"L^2(vi),fl*(vi)J ^0*(vi) ^^2(vi), 

(5.4.102) 

which involves obtaining an expected value of a continuous variable in mean deviate form. Equation 
(5.4.102) may also be written as 

IJi{Z I V\,U2  =  0) 

= (1 - C2) J'J J_ ^2 (f>"lL{y\),e*(v-o ]de*{v\} dUv,) 

- {\ - C2)\]^ \_^^J^(Z2\v\)4>"[i2(v\)M(v\)]de*{v\)dl2{v\), ' (5.4.103) 

an equation involving the difference between the products of a constant, (1 — C2), and a double 
integral. In (5.4.103), the product of this constant and the double integral where the integrand is 
a product of ^2 is by definition %(Z2 \ v\,u'2 = 0) or ^l(Z2 \ VJ,M2 = 0). Thus one may write 

/u.(Z2 I v\,U2 = 0) = ix(Z2 I v;,«2 = 0) 

- M(Z2 I Vl) (1 - C2) J_   J_ <i>''[Uv\),B*{yd] de*{v[) dUv',), (5.4.104) 

where the constant with respect to the integration i^iZj \ v\), has been written outside of the double 
integral. After a substitution from (5.4.98) into (5.4.104), one has 

M(-Z2  I   »'1,«2   =   0)   =   /J.(Z2  I   V1,M2   =   0) 

-t^iZi I Vl) ^' ~ '^^ \'\      <^[^2(vl),^*(vl)] ^^*(vl) ^^2(vl)      (5.4.105) 

or merely 

^(Z2 I vl,M2 = 0) = tx{Z2 I vl,M2 = 0)-A/,(Z2 | vl), (5.4.106) 

because of (5.4.64). In (5.4.106), /a(Z2 | V1,M2 = 0) is the mean of the continuous variable Zj 
as originally scaled subsequent to the effects of incidental selection resulting from explicit selection 
on the continuous variable Z, and of explicit selection on the continuous variable Zj given the 
earlier incidental selection; and ^i{Z2 | vl) is the mean of the continuous variable Z2 given the 
incidental selection resulting from explicit selection on the continuous variable Z|. 

A generalized expression may now be written for jU,(Z2 | vl,^/*). As can be seen in (5.4.76), (5.4.86), 
(5.4.96), and (5.4.106), this expression is given by 

M(Z2 1 vtut) = /ti(Z2 I v*,U2)-p-{Z2 I vf), (5.4.107) 

a form that proved useful in an earlier context. In this earlier context, ability estimation was compared to a more 
familiar method of estimation. This method was that of linear regression. 

The Variances of Zjiv^ ) for the Realizations of U2 ■ By assumption it is known that the standardized 
continuous variables Z2(V|), like Z^ in an earlier setting, are distributed bivariate normally with respect to the 
continuous variable of ability. Thus, the earlier developments obtained under identical circumstances can be 
interpreted into the present context to provide solutions for the variances of the Z2(V|) for each of the realizations 
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of U2. However, some further developments are required. These developments demonstrate that the variances 
of Zjiv^) for each of the realizations of f/* possess identities that consist of the ratios of variances. These ratios 
of variances are required in the derivations which provide solutions for the variances of ability given the outcomes 
V| and L^2 • 

Given the two-parameter normal ogive submodel, the updating assumption, and the previous outcome 

The variance of Z-i(y\) when a correct answer to free-response Item 2 is observed, 
(^■{2,21 Vj, M2 =  1), is by definition ■ 

0-2(Z2 I   V,, W2   =    1)   =   %(Zl I  V,,M2   =    1)   -   il\Z. I  V,,M2   =    1) 

Lv,, J---C ^^^'''^ <^*[^2(V|), 0*(v,)] d¥{y{) dUv,)\ ,       (5.4.108) 

where the joint density function 0*[^2(>'i), ^*(vi)] is provided by (5.4.68). Equations (5.4.68) 
and (5.4.108) may b_e viewed as resulting from (2.3.36), (2.3.37), and (2.3.62) after substitutions 
of y2(v,) for y,, ^^iyx) for /^, 0*(v,) for 6, and/'2(v,) forP,. Since y^iv,), {-.{v,), ¥{v{), 
/'2(V|), and, consequently, o^(Z21 v, ,«2 = 1) have respective definitions that correspond to those 
of 7«. ^«. ^. P^^ and cP-{Zg,u^ = 1) in this earlier context, one can then interpret the earlier 
solution for c^(Z^ | u^ = 1), (2.3.82), into the present context as 

which provides the variance of Z2(v,) when a correct answer to a free-response Item 2 is observed. 
Because of (5.4.57), (5.-4.66), and (5.4.70), an abbreviated form of (5.4.108) may be 

written as 

a-\Z2 I V,,M2  =   1)  = mZl I V|,«2  =   1)   -  A<-^(Z2 I V|,M2  =   I)],      (5.4.110) 
(T \ZJ2 \  V|} 

where the expression in brackets is a variance. This expression by definition is the variance of 
Z2(v,) when a correct answer to Item 2 is observed. The equation for this variance then is 

Cr2(Z^ I V|, «2   =   1)   =   %{Zi I V,,tt2   =    1)   -   At^(Z2 I V,,tt2   =   1). (5.4.111) 

A substitution from (5.4.111) into (5.4.110) allows one to write 

0-^(Z2 I  V|,M2   =    1) 
a\Z2 I v,,tt2 =  1) =  :^--;^,—r , (5.4.112) 

»• (Z, I V,) 

where a^{Z2 \ V|,«2 = 1) has an identity which after substitution into (5.4.112) provides a more 
useful expression. 

In solving for this identity, it is necessary to examine further the expected value 
%{Z2 I v,,w2 = !)■ Because of (5.4.66), this expected value of squared mean deviates may be 
expanded as 

%(Zi I v,,«2 = 1) = [ay^)]- <i>nUvi), e*(v,)] ddHv,) dUv,) 

=   J^,,„, j_ 1^2   -   '^<^2 I  »'l)l' <^*[^2(V|),     ^*(V,)] de*(v,) dUv,) 

Cl<i>*\l2{v,),e*{v,)]de*(v,)dl2{v,) 
J72(>'|)  J - = 

- 2^l(Z21V,) Ci -An^sCv,), 0*(v,)] de*(v,) dUvi) 

+ M'(Z2|V,))        I      cA*[^2(v,), 0*(v,)J ^0*(v,) rf^2(v,), (5.4.113) 
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where the constant, /J-CZJ | V,) or ^i-iZj | v,), has been moved outside of two of the double 
integrals. In the last equality in (5.4.113), the first double integral defines %(Z\ \ V,,M2 = 1), 
where one then has 

■^(211 vi.tto = 1) = I I i\<i>*\Uv,)/Q*{v,)\d¥{v,)dUvO (5.4.114) 

and the second double integral defines \x{Z2 \ V|,M2 =  '), where one has 

/^(Z^l v,,«2 =   1) =   I I      ^2<A*I^2(V|), ^*(v,)l^e*(v,)42(V|).       (5.4.115) 

Substituting from (5.4.68), (5.4.114), and (5.4.115) into (5.4.113), one may write 

%{Z\ I  V|,W2   =    1)   =   "^(-^ I  V,,M2   =    1) 

-   2/Ll(Z2 I  V|) /A(Z2 I V|,tt2   =    1) 

+ ^L   ." <^[^2(vi), ^*(v,)](/0*(v,)42(v,)     (5.4.116) 

where this equation may be simplified to 

%(Zi\ V|,M2   =   1)   ==   'UZ\\ V|,«2   =   1) 

- 2M(Z2 I V|) /IA(Z2 I v,,W2 =  1) + ii}{Zj I V|)      (5.4.117) 

because of (5.4.58). A substitution from (5.4.117) into (5.4.111) now provides 

0-2(Z2 I  V|,M2   =    1)   =   'MZ\ I  V|,M2   =1) 

-   2/Ll(Z2 I  V|) jlx(Z2 I  V,,M2   =    1) 

+  jU,-(Z2| V,)  -  /x-(Z2| V,,«2 =   1) (5.4.118) 

where a further substitution from the squared result of (5.4.76) yields 

0--(Z2 I  V|,M2   =    1)   =   %{Zl I  V|,M2   =    1) 

- 2/Ll(Z2 I  Vi) ^l(Z2 I  V|,M2   =    1) 

+   /.l^(Z2 I  V|)   -   /X-(Z2 I  V|,tt2   =    1) 

+   2/x(Z2 I V,) |li(Z2 I V,,M2  =   1)  -  ^'(^2 I V,).       (5.4.119) 

The cancellation of terms in (5.4.119) provides 

(T\Z^ I V|,M2  =   1)  = 'UZ\ I V,,«2  =   1)  -  Al^(22 I V|,«2  =   D- (5.4.120) 

But, by definition, one has 

0-2(Z2 I  V,,M2   =    1)   =   %iZ?i I  V,,M2   =    1)   -   Al^(Z2 | V, .Wj   =    1), (5.4.121) 

where a substitution from (5.4.121) into (5.4.120) provides the sought identity 

0--(Z2 I V|,M2  =   1)  =   Cp-iZ^ I V,,tt2  =   1). (5.4.122) 

The substitution of this identity of C7^(Z2 I V|,M2 = 1) into (5.4.112) yields 

<j\Z^   v,,«2 = 1) = %    ',- ,     \ (5.4.123) 
criZ2 I V,) 

which because of (5.4.109) may be extended to provide the useful form 

2/7   1 ,N 0-^(Z2 I  V|.M2   =    1) 
O- (-^2     V,,!*,   =   1)   =    ;— ^  

Cr'(Z2 I V|) 

. .     <^(y2('':)l J</>[r2(»',)l 

/'2(V|)       I     /^zCVl) 
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which allows a substitution into a development from selection theory. This substitution will lead 
to a convenient expression for the variance of ability given the outcome v, when a correct answer 
to free-response Item 2 is observed. 

_    The variance of ZJCV,) when an incorrect answer to free-response Item 2 is observed, 
(P-{Z2 I V|,M2 = 0), is by definition 

0-2(Z2 I Vi,W2   =   0)   =   ^(Z| I  V|,M2   =   0)   -   y}{Z-2 \  V, ,M2   =   0) .,      -,       " 

, [^2(V,)]^ (^'[^.(V,),   0*(V,)] d¥{x,) dUv,) 

T,(v,)     f=c 2 

^2(v,) (/>n^>i), ^*(vi)] rf0*(v,) J^2(v,) (5.4.125) 

where the joint density function (/)i^2(vi), 0*(V|)] is provided by (5.4.78). Equations (5.4.78) 
and (5.4.125) may be viewed as resulting from (2.3.49), (2.3.50), and (2.3.85) after substitutions 
of y2(v,) for y^, ^2(v,) for (^^ e*(V|) for B, and e2(vi) for g^. Since y2(v,), ^2(V|), 0*(v,), 
22(fi), and, consequently, cr2(Z21 V,,M2 = 0) have respective definitions that correspond to those 
of 7^,, l^, e, Qg, and o^{Zg | M^ = 0) in this earlier context, one can then interpret the earlier 
solution for o^{Z^ | a^ = 0), (2.3.96), into the present context as 

which provides the variance of Z2(V|) when an incorrect answer to Item 2 is observed. 
Because of (5.4.57), (5.4.66), and (5.4.80), an abbreviated form of (5.4.125) may be 

written as 

a\Z2 I v,,M2 = 0) = [^(^ I V|,«2 = 0) - ^'(^2 I v,,«2 = 0)],     (5.4.127) 
"   V-^2  I  *^1/ 

where the expression in brackets is a variance. This expression, by definition, is the variance of 
^(v,) when an incorrect answer to Item 2 is observed. The equation for this variance then is 

cr^iZj I v,,tt2 = 0) = %{Z^2 I v,,tt2 = 0) - ^-'(Z2 I v,,«2 = 0). (5.4.128) 

A substitution from (5.4.128) into (5.4.127) allows one to write 

,   -    , 0-^(^2 I Vi,M2   =  0) 
o-iZi I vuui = 0) =  j—r-— , (5.4.129) 

O" (-^2 I  »'l) 

where cr^(Z21 v,, «2 = 0) has an identity which after substitution into (5.4.129) provides a more 
useful expression. 

In solving for this identity, it is necessary to examine further the expected value 
%(^ I v,,tt2 = 0). Because of (5.4.66), this expected value of squared mean deviates may be 
expanded as 

%{Z^2 I v,,«2 = 0) =      " [^2(v,)]' <t>\Uv,), ^*(v,)] d'BHv,) dUv,) 
'X.      J — oc 

Y^d-.)    fx 

[^2   -   ^(^2 I V,)]2 <A1^2(V|),    e*(v,)] Cf0* dUv,) 

^2  0'[^2(V|),   ^*(V,)]c(0*(V|)rf^2(V,) 

-2MZ2 I V.) Y^    J_^ ^2 </''[^2(v,),  0*(V,)] ^0*(V,) ^^2(V,) 

^y,(v,)    fee 
,2/ + M2(Z2 I V,) |_^   |_^ (/-'[^zCv,), 0*(v,)] ^9*(v,) dUv,),       (5.4.130) 
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where, as a matter of convenience, the constant, /i,(Z21 v,) or iJ^iZj \ v,), has been moved outside 
of two of the double integrals. In the last equality in (5.4.130), the first double integral defines 
%{Z\ I Vi,«2 = 0), where one then has 

%{Zl I v,,M2 = 0) = J'J J_^ i\ (t>'[l2(v0, e*(v,)] ^^*(v,) dUvi);      (5.4.131) 

and the second double integral defines /LI(Z2 | V|,M2 = 0), where one has 

tJi(Z2 I v,,M2 = 0) = J_"^   J^ ^2 <^'[^2(vi), ^*(V,)] de*(v,) dUv,).       (5.4.132) 

Substituting from (5.4.78), (5.4.131), and (5.4.132) into (5.4.130), one may write 

%{Zl I V,, «2 = 0) 

= ^(Z| I v,,M2 = 0) -2ja(22 I V,) MZz I V|,«2 = 0) 

+ ^i', (l>[Uv,), e*ivO] ddHv,) dl^iv,),     (5.4.133) 

where this equation may be simplified to 

'g(Z2 I V„ «2   =   0) ■,.:. ^- \ 

=   ^(Zi  I   V,,M2   =   0)   -2/x(Z2  I  V,)  M-^2  I   V,,M2   =   0) 

',     ^ + fiHZjl V,) .^^ (5.4.134) 

because of (5.4.60). A substitution from (5.4.134) into (5.4.128) now provides 

a-{Z2 I V|, «2 = 0) 

■ ' , =   %{Zl I V|,«2   =   0)   -2A(.(Z2 I  V|) /i.(Z2 I  V,,M2   =   0) 

■   •■   ' ■ + M^(Z2| V,) - /Li2(Z2| v,,M2 = 0), (5.4.135) 

where a further substitution from the squared result of (5.4.86) into (5.4.135) yields 

(T^(Z2 I V,, M2   =   0) 

=   %{Zl I  V,,«2   =   0)   -2/ll(Z2 I  V,) M(Z2 I  V,,M2   =   0) 

+ /a2(Z2 I V|) - iJ.^(Z2 I v,,«2 = 0) 

+ 2At(Z2| V,) M22I V|,M2 = 0) - /x'(Z2| V,). (5.4.136) 

The cancellation of terms in (5.4.136) provides 

aHZ2 I v,,M2 = 0) = <g(Zf I v,,tt2 = 0) -M'(-?2 I v,,«2 = 0). (5.4.137) 

But, by definition, one has 

o-2(Z2 I v,,M2 = 0) = %{Zl I V|,«2 = 0) - /L(,2(Z2 | V,,«, = 0), (5.4.138) 

where a substitution from (5.4.138) into (5.4.137) provides the sought identity 

0-2(Z2 I V,,M2   =   0)   =   0-2(Z2 I V,,M2   =   0). (5.4.139) 

The substitution of this identity of o^{Z2 \ V|,M2 = 0) into (5.4.129) now yields 

.^(Z2 I v„.2 = 0) = ^^^^%f^, (5.4.140) 
O" (Z2 I  V|) 

which because of (5.4.126) may be extended to provide the useful form 
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yMi 

• O^iZi I V, ,U2  =  0)  =   ,'        I \  
O" (-^2 \V\) 

which allows a substitution into a development from selection theory. This substitution will lead 
to a convenient expression for the variance of ability given the outcome v, when an incorrect 
answer to free-response Item 2 is observed. 

Given the three-parameter normal ogive submodel, the updating assumption, and the previous outcome 

The variance of Z2(v\) when a correct answer to multiple-choice Item 2 is observed, 
cr^iZj I vJ,M2 = 1), is defined by 

aHZ2 I v\M = 1) = ^(Z| I v\,u^ = 1) - fj,\Z2 I v[,u^ = 1) 

_lUy\)fct>*'[t2iv\),0*(v[)]de*{v\)dC2{v\) 

+ ^2J_^ jjC2(y[)]^V'[L(y\),e*(v[)]de*iv\)dUv[) 

V;. /-«^2(vi) <^*'[^2(v;), 0*(vi)] de*(v\) duv\) 

^ ^^J-= J-J2^''!^'^*'f^2(vi), ^*(v;)]./0*(v;)42(v;)f,   (5,4.i42) 

where the joint density function (j)*'U2(v\), 0*(v\)] is provided by (5.4.88). Equations (5.4.88) 
and (5.4.142) maybe viewed as resulting from (3.3.11), (3.3.12), and (3.3.34) after substitutions 
of ysCv!) for y^, ^2(^1) for ^,, ^*(v;) for 9, Pjivl) forP;, and cj for c,. Since 72(vl), LW, 
e*{v\), Pjiv]), C2, and, consequently, o^(Z2 | v\,U2 = 0 have respective definitions that corre- 
spond to those of y^, (,, 9, P;, q,, and ^^(Z, | w,^ = 1) in this earlier context, one can then 
interpret the earlier solution for o^(Z^ | «; = 1), (3.3.42), into the present context as 

CT^(Z2  \  v't,U2   -    1) 

- ' nW 1 n^) ^^("Dj' (5.4.143) 

which provides the variance of Z2(v[) when a correct answer to a multiple-choice Item 2 is 
observed. 

Because of (5.4.57), (5.4.66), and (5.4.90), an abbreviated form of (5.4.142) may be 
written as 

aHZ2 I v\,u^ =  1) = ^ [^(Z| I v[,u^ =  1) - fjiHZj I v;,M^ =  1)],     (5.4.144) 
•^ V'^21 y]) 

where the expression in brackets is a variance. This expression, by definition, is the variance of 
Z2(v;) when a correct answer to Item 2 is observed. The equation for this variance then is 

cr2(Z2 I v[,u^ =  1) = ^(Z| I v\,u'2 =  1) - iJ,\Z2 I v\,U2 =  1). (5.4.145) 

A substitution from (5.4.145) into (5.4.144) allows one to write 

'^'(^2|v;,«2 =1) 
o- (^21 v^Mz = 1) = jpri—r,—, (5.4.146) 

O" (^2 I  >'l) ■ 

where o^(Z2 | v[,u2 = 1) has an identity which after substitution into (5.4.146) provides a more 
useful expression. 
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In solving for this identity, it is necessary to examine further the expected value 
%{Z2 I v;,W2 = 1). Because of (5.4.66), this expected value of squared mean deviates may be 
expanded as 

%{Z\ I V\,U'T_ =1) 

C2 J_    J_ [C2(V\)? cj>*'[Uv\),   0*iv\)] dd*iv\) dUv\) 

^^(^,^ J_ [^2 - M^21 vi)]2 <^*'[^2(vi), e*{v\)] de*iv\) dUv\) '    , 

^ "^ J-« !-»f^2 - M^21 v;)]2 0*'[^2(vi;, ^*(vi)] de*(v\) dUv\) 

,, ,    ^1 </'*'[f2(vi), e*{v[)] de*{v[) dUv[) 

-2M(Z2 I v[) J^^^^ J^ Ci Vllzivriy'i), e*iv[)] de*{v[) dUv\) 

+ fiHZ2 I vl) <^*'[^2(vi), cfl)] de*{v[) d'Uvd 
Jy,(vj, J -=c 

+ C2 JjJ f   ^1 r'[^2(vi), e*iv\)] dd*(v\} dC2iv\) 

wv!)  r=c 

-2 C2 ^^(^2 I  V;) J_^    J_^ ^2 </>*'[^2(v;),   ^*(V;)] dd*iv[) dl2{v\) 

+ C2 ^'(^2 I vl) J_"J J_^ <^*'[^2(v',), Hv\)] dd*{v\) dUv'i), (5.4.147) 

where the constant, fiiZj | v)) or ;u,2(Z2 \ v\), has been moved outside of four of the double 
integrals for the purpose of convenience. By definition, it is known that 

^(Zii v;,«^ = 1) -    -;,, •   ■■ 

^^,^. ,   , _ ei <A*'[^2(vi), e*iv\)] dHv\) dUv\) 

ri',i>'j)   rx 

■^ J-=c   J_. ^2 '^*'[^2(v;), e*(v\)] de*{v\) dUv\),     (5.4.148) 

which may be substituted into (5.4.147). After this substitution and some rearrangement, one may 
write 

%{Zl\v\,u'2 = 1) = %(Zl\v\,u'^ =1) -■    ' ■ 

■••■•■■ - 2M(Z2 I v;)  J     J_^ ^2 r'lUv',), e*{v\)] de*(v[) dUv[) 
,     ■>'2(''i) 

— X      J —oc ̂ 2  </'*'[^2(vl),   ^*(vi)] d/^*(vi) ^^2(V;) 

+ M^(Z21 Vl) |j^^^^^^ |_^ </.*'[^2(v;), e*{v[)] de*(v\) dUv\) 

(5.4.149) 
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an equation that can be further simplified. By definition, one has 

/X(Z2 I  vi,M2   =    1) 

^2 <^*'[^2(vl), 6*iv\)] de*iv\) dC2iv[) 

+ ^■2j_   J_^2'/'*'[^2(v;), 0*(vl)]rf0*(vl)J^2(vl),      (5.4.150) 

which may now be substituted into (5.4.149). After substitutions from (5.4.88) and (5.4.150) into 
(5.4.149), it is known that 

%{Z^\ v[,u^ =1) ■   " 

= ^(Z^ I vl,«^ = 1) - 2/x(Z2 I vl) M(^2 i v;,«^ = 1) 

+ ^'!5' L""'^ I f     f   <t>[l2iv\), e*iv\)] de*{v\) dUv\) 

+ C2 P '" f     (i)[Uv\),Hv\)]d6*{v\)dlM)\, (5.4.151) 

which can be written as 

%(Zl I V\,u'2  =1) ■; .... ,; 

= %(Zl I v\,U2 =  1) - 2M(-^2 I v'\) M(^2 I vl.Mz =  1)        (5.4.152) 

because of (5.4.62). A substitution from (5.4.152) into (5.4.145) now leads to 

0-'(Z2 I  vi,W2   =1) 

= %(Zl I v|,«2 = 1) - 2/Lt(.^ I vj) fjiiZj I vj,tt2 = 1) 

+ ;u,-(Z2 I vi) - /x2(Z2 I v;,M2 = 1), (5.4.153) 

where a further substitution from the squared result of (5.4.96) yields 

Cr2(Z2 I  Vl,«2   =    1)   =   "foiZl I  V;,M2   =    1)   -   2/Li(Z2 |  v\) jLl(Z2 |  VJ ,«2   =0 

+   /Ll2(Z2 I  vj)   -   /i,^(Z2 I  V;,M2   =   1) 

+ 2AI(Z2| v;)/x(Z2| v;,«2 =  1) - M2(Z2 I vl). (5.4.154) 

The cancellation of terms in (5.4.154) provides / « 

(T2(Z2 I v;,tt2   =   1)   =   ^(Z| I v;,M2   =   1)   -   M^(Z2 I V;,tt2   =   1). (5.4.155) 

But, by definition, one has 

(j\Z2 I v\,u'2 = 1) = %(Zl I v;,«^ = 1) - Ai-(22 i vl,«2 = 1). (5.4.156) 

where a substitution from (5.4.156) into (5.4.155) provides the sought identity 

cr2(Z2 I v;,tt2 = 1) = cr2(Z2 ! v;,«2 =  1). (5.4.157) 

The substitution of this identity of o^(Z2 | vl.w, = U into (5.4.146) yields 

1 ^ 1 ,  , o'-(Z21 v;,«T = 1) 
ar\Z2   V ,M   =  1) = \'      l^^ ^ (5.4.158) 

0-^(Z2|V|) 

which because of (5.4.143) may be extended to provide the useful form 
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cr\l2 I V,,M2 =   1) =   I        
O" (Z2 I V,) 

-1 ^;7^;;7^ 1 ^T^;;!^  y^WJ,   (5.4.159) 

which allows a substitution into a development from selection theory. This substitution will lead 
to a convenient expression for the variance of ability given the outcome v! when a correct answer 
to multiple-choice Item 2 is observed. 

_    The variance of Z^Cvj) when an incorrect answer to multiple-choice Item 2 is observed, 
0-^(^2 I v\,u'2 = 0), is by definition 

._•   ar\Z2 I v\,u'^ = 0) = %{Z\ I v;,M^ = 0) - ij}{Z^ I V\M2 = 0) ■ ■■ 

" ^^ ^ ^^^ J-=c   J_. ^^2^"!)]' '^''[^2(v;), 0*(vl)] dh*(y\) dUv\) 

" r' " ''2^ J-oc J-„ ^2^''') </'''[^2(v;), e*(v;)] ^^*(v;) ^^2(v;)  , 

■ (5.4.160) 

where the joint density function ^'"{l^i^'x), B*{v\)\ is provided by (5.4.98). Equations (5.4.98) 
and (5.4.160) may be viewed as resulting from (3.3.22), (3.3.23), and (3.3.45) after substitutions 

of y2(v;) for y,, ^2(^1) for 4, ^*(vl) for 0, e^(v;) for g;, and c^ for c,. Since y2(v;), 

^2(vl), ^*(v;), gzCvi), Qiiy'x), C2, and, consequently, 0-^(72 | v\,u'-^ = 0) have respective defi- 
nitions that correspond to those of y,, 4,, 6, Q'g, Q^, c,, and cr\Z^ | «; = 0) in this earlier 
context, one can then interpret the earlier solution for cr^{Z | M^ = 0), (3.3.50), into the present 
context as 

which provides the variance of Ziv'^) when an incorrect answer to Item 2 is observed. 
Because of (5.4.57), (5.4.66), and (5.4.100), an abbreviated form of (5.4.160) may be 

written as 

a\Z2 I v;,M^ = 0) = [%{Zi I v\,u'2 = 0) - ^Ji\Z2 I v[,u'2 = 0)],       (5.4.162) 

where the expression in brackets is a variance. This expression, by definition, is the variance of 
Z2(vi) when an incorrect answer to Item 2 is observed. The equation for this variance then is 

cr\Z2 I vl,«2 = 0) = %(Z'2 I v\,u'2 = 0) - ix\Z2 I v\,u'2 = 0). (5.4.163) 

A substitution from (5.4.163) into (5.4.162) allows one to write 

cr-(Z2 I VJ,M2  =  0) 
o-2(Z2| v;,M^ = 0) =    , .     ■ (5.4.164) 

O" (-^2 I  V|) ' 

where cr^(Z2 \ v\,U2 = 0) has an identity which after substitution into (5.4.164) provides a more 
useful expression. 

.In solving for this identity, it is necessary to examine further the expected value 
%(Z2 I v;,«2 = 0). Because of (5.4.66), this expected value of squared mean deviates may be 
expanded as 
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%{Z\ I v\,ui = 0) = (1 - c{) I'J   |_^ [^2(v;)]2 <^"\'Uy\), 0*(v;)] d¥{v\) dUv\) 

= (1 - C2) 1''^'' |_^ [^2 - M^21 v\)f 4>"[Uv\), 0*(v;)] rf0*(v;) rf^2(v;) 

= (1 - C2) £'J' |_^ ^1 <i>"[Uv\), e*{v\)] de*(v[) dlM) 

- 2(1 - C2) ^(^21 vi) £'^'' |_^ f2 </.^'[^2(v;), ^*(v;)] ^^*(v;) dUv\) 

+ (1 - C2) Ai2(Z2 I vl) \]^ \_^ 4>'"{Uv\), 0*(vi)] dHv\) dUv\), (5.4.165) 

where, as a matter of convenience, the constant, fi(Z2 \ v\) ox ti^{Z2 \ v\), has been moved outside 
of two of the double integrals. In the last equality in (5.4.165), the product of (1 - Ci) and the 
first double integral defines %(Zl \ VJ.MJ = 0) where one then has 

%{Zi\v\,u'2 = 0) . 

V        = (1 - C2) J'J J_ Ci 4>"{l2{y\), Q*(y\)] de*iv\) dUv',),   (5.4.166) 

and the product of (1 - ci) and the second double integral defines /^(Zj | V',,M2 = 0), where one 
has ,      , 

fx{Z2\v\,u'2 = 0) ■ ./       • . '  M;. 

,,    ,     ={\-c2)\^^^\_^(2(i>''{l2(v[),Hv\)]dHv\)dUv\).        (5.4.167) 

Substituting from (5.4.98), (5.4.166), and (5.4.167) into (5.4.165), one may write 

%{Zl\ v\,u'2 = 0)        ■ ... 

=   %{Zl I V[,U'2   =   0)   -   2M(Z2 I vl) fl{Z2 I V\,U'2   =   0) 

^ ^' ~ ^'      eKvi)     J-   J-,^t^^('''')'^*(''i)]^^(''i)^^2(vi),      (5.4.168) 

where this equation may be simplified to 

'g(Zi I v\,u'2 = 0) = ^(Z| I v\,u'2 = 0) - 2M(Z2 I vl) M(Z2 I v\,u'2 = 0) 

+ M'(Z2| v',), (5.4.169) 

because of (5.4.64). A substitution from (5.4.169) into (5.4.163) now provides 

o-2(Z2 I vl,W2 = 0) - 

= ^(Zi I v;,M^ = 0) - 2MZ, I vl) MZ21 v;,M^ = 0) 

+ M'(Z2 I v',) - /x2(Z2 I v\,u'2 = 0), ■ (5.4.170) 

where a further substitution from the squared result of (5.4.106) into (5.4.170) yields 

CT\Z2 I v\,u'2 = 0) = %(Zl I v\,u'2 = 0) - 2^Ji(Z2 I vl) JU.(Z2 I v\,u'2 = 0) 

+ M'(Z2| V\) - ,xHZ2\ v[,u'2 = 0) 

+ 2MZ2I v;);a(Z2| v;,M^ = 0) - At'(Z2| vl). (5.4.171) 

The cancellation of terms in (5.4.171) provides 

o-2(Z2 i v;,M^ = 0) = 1(Z| I vl,«^ = 0) - |a-(Z2 I v\,u'2 = 0). (5.4.172) 
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But, by definition, one has 

o-Vz I v\,u'2 = 0) = %(Zl I v\,u'2 = 0) - ixHZ^ I v\,u'2 = 0), 

where a substitution from (5.4.173) into (5.4.172) provides the sought identity 

a\Z2 I v\,u'2 = 0) = a\Z2 \ v\,u'2 = 0).   ■ 

The substitution of this identity of a\Z2 | V1,M2 = 0) into (5.4.164) yields 

o-2(Z2| v\,u'2 = 0) 
0-2(Z2 I V;,M^   =   0)   = 

crHZ2 I vl) 

(5.4.173) 

(5.4.174) 

(5.4.175) 

Because of (5.4.161), equation (5.4.175) may now be extended to provide the useful form 

O- (^2 I  vl) 

=    1 (t>[y2(v\)]   J0[72(V1)] 

Qiiy'i)   [ Qiiy'O 
+ Jiivl)},    (5.4.176) 

which allows a substitution into a development from selection theory. This substitution will lead 
to a convenient expression for the variance of ability given the outcome vl, when an incorrect 
answer to multiple-choice Item 2 is observed. 

The derivations culminating in (5.4.122), (5.4.139), (5.4.157), and (5.4.174) demonstrate the principle 
that the variance of a variable is unchanged by the addition of a constant. The continuous variable Z2(vf) equals 
the continuous variable Zj plus a constant. In the general case, this additive constant is the negative of 
M(22 I vf). 

A generalized form for the variance of the standardized continuous variable Z2(vf) given the realizations 
of the binary variable f/f may now be written. As can be deduced from (5.4.123), (5.4.140), (5.4.158), and 
(5.4.175), this expression takes the form 

aHZ2 I vf,Uf) = 
a^(Z2 I vf ,^?) 

^^(Zjlvf)   • (5.4.177) 

The Correlation Between Z3 and 6* Given the Outcome Vector vl, p{Z^,0 \ vl) 

In obtaining an explicit solution for p(Zi„0 \ v?) one begins by deriving expressions for p\Z2,Z^ \ vf) 
and pHZ2,6 | vf) for later substitution into the first two equalities in (5.3.56). In solving for p\Z2,Z^ \ vf), 
one obtains an explicit solution for ^(Z, | vf) from the first two equalities in (5.3.52). This solution yields 

cr(Z3 I vf) - I , cr(Z2    vf) 
P(Z2,Z3 I Vj)   0-(Z2 I vf) (5.4.178) 

where, upon squaring (5.4.178) and substituting from the result into the first two equalities in (5.3.54), some 
rearrangement provides 

a2(Z3|vf)o-2(Z2|vf) 
<T\ZM) [1 -p2(Z2,Z3|vf)]   =   pV2,Z3|vf) ,   ^ ,   ^^ 

0-^(Z2|vf) 

Dividing (5.4.179) by the product a^(Z3 | vf) p\Z2,Z^ \ vf), one has 

1 

p\Z2,ZM) 
1 

1 
- 1 = 

_   ^\Z2 I  Vf) 
p\Z2,Z^ I vf)       '       a\Z2 I vf) 

where an explicit solution for p\Z2,Z2 \ vf) yields 

0^(Z2 i  Vf) 

p2(Z2,Z3 I Vf) 

PHZ2,Z, I vf) =    1 + 
0^(22 I  vf)  [p2(Z2,Z3 I  Vf) 

(5.4.179) 

(5.4.180) 

(5.4.181) 

m 



In solving for p^{Z2,0 \ vf), one obtains an explicit solution for (T{0* \ vf) from the first two equalities in 
(5.3.53). This solution yields .   , 

p{Z2,e\ vf)   (7(0*     vf)       ^   , 
a{0*   vf) = '\ \ o-(Z2   vf) 

'   ''      p(Z2,e   vf)   aiZ^   vf)    ^212; 
(5.4.182) 

where, upon squaring (5.4.182) and substituting from the result into the first two equalities in (5.3.55), some 
rearrangement provides 

Cr2(0*|vf)  0^(Z2|vf) 
cr2(0*|vf) [1 - p2(Z2,0|vf)] = pHZ2,0\vf) 

cr\Z2\vf) 

1 

p2(Z2,0|vf) 

Dividing (5.4.183) by the product o^(0* | vf) p^(Z2,0 | vf), one has 

1 _ j ^ ^^(Z2 I vf) 
p\Z2,e I vf) a\Z2 I vf) 

where an explicit solution for p^(Z2,Q \ vf) now yields 

,   o-'(Z2|vf) 

/(Z2,0| vf) 

p'(Z2,0 I vf) 
CT\Z2  I   vf) p2(Z2,0|   vf) 

1 

(5.4.183) 

(5.4.184) 

(5.4.185) 

After appropriately substituting the results of (5.4.181) and (5.4.185) into the first two equalities in 
(5.3.56), one obtains 

P(Z3,0 I   vf)   -   p(Z2,Z3  I   vf)  p(Z2,0 I   vf) 

Vl    -   p2(Z2,Z3  I   Vf)  Vl    -   p2(Z2,0 I   Vf) 

C7\Z2  I   vf) 
p(Z3,0 I vf) -      1 

Or\Z2 I  vf) p-iZ., Z3 I vf) 

-.5 
o-^(Z2 I vf) 

(T\Z2  I   Vf) p\Z2, 0 I vf) 
(5.4.186) 

1  + 
0-^(Z2  I   vf) 

(T\Z2      vf) pHZ2,z, I vf) 

0-^(Z2   I   vf) 

cr-(Z2   vf) 

1 

p2(Z2,0|   vf) 

where the equality on the right side can be simplified. By placing the terms under the radicals on common 
denominators and subtracting terms in the numerators, one obtains 

p(Z3,0| vf) -     1 
0-^(Z2 I  vf) 
(T-(Z2  I   vf) p2(Z2,Z3  I   vf) 

1    + 
tr^(Z2 I vf) 

0-HZ2 I  vf) 

1 
p2(Z2,0|  Vf) 

0-^(Z2  I   vf) 

CTHZ2 I vf) L 

cr'(Z2 I vf) 

crHZ2 I vf) 

1 

p2(Z2,Z3 I  Vf) 

(5.4.187) 

Multiplication of the numerator and denominator of (5.4.187) by the square roots of the denominators under the 
radicals, along with some later rearrangement, leads to 

p(Z„e| vf)   1 + aHZ2 I "2* 
aHZ,\ vf PHZ2.Z, I vf) 

1  + 
a-(Z2 i vf) 
cr-iZ, ! vf) .p-(Z2,e| vf) 

a-{Z, I vf) 

cr-(Z I vf) y p^(Z2,Z I vf) 

where multiplication of the numerator and denominator by the ratio 
rearrangement, leads to 

p-(Z2,0|   Vf) 

cr(Z2 I vf) 

o-'(Z2 I vf) 

(5.4.188) 

along with some later 
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crXZ. I vf)      p-(Z,,Zj I vf) o-2(Z2|vf)      p2(Z,,e|vJ) 
a-^(Z, I vf) 
o--(22 I vf) 

1 

P(Z2,Z, I vf) 1 - p-(Z.,Z, I vf) 
1 

p{Zj,e\ vf) 
p2(Z2,ei  vf) 

(5.4.189) 

Multiplication of the numerator and denominator in (5.4.189) by piZjyZy \ v%) and piZ^.Q \ vf), along with 
subsequent rearrangement, leads to 

p(Z„e| vf)  1 - p-(Z,z, I vf) 0--(Z; I  vf) 

cr(Z^^ I vf) 
1 - p-(Zr,e I vf) 

(r-(Z^_ j vf) 

cr{Z^_ I vf) 
p(Z3,Z, I vf)p(Z,,0| vf) crXZ. I vf) 

(T\Z_ I vf) 

p-(Z,,Z, I vf) Jl  - p=(Z,,e| vf) 

(5.4.190) 

which may be substituted back into (5.4.186) for the expression on the right side of the equality. This substitution 
provides 

p(Z^,01 vf) - p(Z,,Zy I vf) p(Z_,e I vf) • 

I - p-(Z2,z, I vf)  /I - p-(Z,,ej vf) 

p(Z„e| vf)   I - p'(Z,Z3| vf) 
d-CZ. I vf 

IT'CZ^      Vif) 
I - p-(Z,,e| vf) 

y\Z. \yf) 
<r-(Z-, I vf) 

P(Z,,Z, I vf)p(Z„e| vf) 
cr^(Z, I vf) 

o-'lZ, I vf) 

I - p-(Z,,Z3| vf) /i - p-{Z2,e| vf) 

where multiplication of both sides of this equation by the common denominator yields 

p(Z3,01 vf) - p(Z2,Z31 Vf) p{Z^,e I vf) 

.5 

=   p(Z3,0|  Vf)       1    -   p2(Z2,Z3|  Vf) 
0-^(Z2 I  Vf) 
^{Z^ I  Vf) 

1    -   p2(Z2,0|  Vf) 
^'(Zz 
<T-{Z2 

piZ2,Z,\ vf)p(Z2,0| vf) 
(THZJ I vf) 
aHZ2 I vf) 

(5.4.191) 

vf)_ 

(5.4.192) 

Through transposing and combining expressions in (5.4.192) one obtains 

P(Z3,0| vf) 

p(Z3,e I  vf)       1    -   p2(Z2,Z3 I  vf) 

+   p(Z2,Z3 I  Vf) p(Z2,0 I vf) 

o'iZ^l vf)" 
0^iZ2\ 

a-HZ2   vf)" 

vf)_ 

C^(Z2 1  Vf)_ ' 

1 - p2(Z2,e| vf) 1 - 
crHZ^ vf) 
o-HZ: ■2 I   V2 Vf) 

which allows one to proceed to a convenient expression for an explicit solution to p{Z^,0 | vj). 
Solving the first two equalities in both (5.3.52)  and (5.3.53) explicitly  for p(Z2,Z3 

p(Z2,0 I vf), respectively, one obtains 

/-7    7   I     ='=^ ^7    7   1     ^,,  0<^3 I vf) 0-(Z2 I vf) p(Z2,Z3 I  vf)   =   p(Z2,Z3     vf) 
o-(Z2   vf) (T{Z^   vf) 

and 

p(Z2,e|  vf)   =   p(Z2,0|  vf) 
a{0* I vf) o-(Z2 I vf) 
0-(Z2 I vf) cr(0* I vf) 

(5.4.193) 

I   vf)  and 

(5.4.194) 

(5.4.195) 
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where squared and unsquared substitutions from (5.4.194) and (5.4.195) into (5.4.193), along with later rear- 
rangement, lead to ^ 

= p(Z„0\vt) I     -    p\Z,,Zy   I   Vf) 

+ p{Z^,z,\vf)p(Z„e\vf) 

(T'IZ, I vf) 

aHZ, I vf) 

o-(Z3 j vf) a{e* I vf) 

a{Z^ I vf) o-(e* I vf) 

a-jZ. I vf) _ 

o-HZ. I vf) ~ 

<J^(Z2 I vf) 

cr=(Z, I vf) 

- p-(Zn,V   vf) \  
a-iZj \ vf) 

a-\Z2   vf) 

-  1 (5.4.196) 

In simplifying (5.4.196) further, one will want to substitute for p{Z2,Z^ \ vf). A convenient expression 
for this correlation will now be derived for later substitution into (5.4.196). In the restricted updating procedure, 
0*(vf) is assumed to be normally distributed. Thus (1.1.12) may be rewritten in this context as 

Z(vf) = /3(vf) e*(vf) + A for all Z^(vf) where g ¥= g<'>. (5.4.197) 

Since linear combinations of normally distributed variables are also normally distributed (Anderson, 1958), one 
has 

Z(vr) ~ Mj8(vf) M(0* I vf), l{Z{v*,), Z(vf)]}, (5.4.198) 

where the (/?- l)-by-(/7- 1) variance-covariance matrix 2[Z(vf), Z(vt)] can be decomposed into 

^[Z(vf), Z(vr)] = /3(vf) /3(vf)' (r\e* \ vf) + 1{A,A). (5.4.199) 

Because the variance-covariance matrix 1{A,A) is diagonal, that is measurement errors are undisturbed by prior 
explicit selection on Z, and are independent from Z^, to Z/, where g does not equal h for the remaining items, 
one has as the off-diagonal element in the gth row an hlh column of the matrix .S[Z(vt), Z(vt)], the covariance 

a[Z,(vf), Z„(vf)] = i3,(vf) i3;,(vf) (7^9* \ vf). (5.4.200) 

In (5.4.200), the regression coefficients /3^,(vf) and /3/,(vt), those which predict Z^(vf) and Z;,(vf) given 0*(vf), 
are by definition 

and 

j8,(vf) = p(Z^,0 I vf) 

;3;,(vf) = p(Z„0| vf) 

(T(Z^ I vf) 
(T(0* I vf) 

(r(Z>, I vf) 

(5.4.201) 

(5.4.202) 
o-(0* I vf)     , . 

respectively. After substituting from (5.4.201) and (5.4.202) into (5.4.200), it is known that 

cr[Z,(vf), Z,(vf)] = p{Z^,e I vf) p(Z,„e i vf) a(Z^ \ vf) a(Z, \ vf) 

where division of (5.4.203) by the product aiZ^ \ vf) cr(Z/, | vf) yields 

alZ^ivf), Z;,(vf)] 
<r(Zj vf) ..(ZJ vf)      P(2.,0|v,)p(Z„0|v,). 

One then finds that the equality on the left in (5.4.204) is p(Z^,Z,, \ vf), by definition. One therefore has 

piZg,Z, I vf) = p(Z^,0 I vf) p(Z,„0 I vf) (5.4.205) 

for substitution into (5.4.196). . , .       ,   . 
After squared and unsquared substitution from (5.4.205) into (5.4.196), one obtains ,,   (^    ■  ,_^ 

(5.4.203) 

(5.4.204) 

p(Z,.e\ vf) 

= p{Z„e\vf) 1 - p-(Z2.0\ vf)pHZy.e] vf 

+ pHZ2,e\vf)p(z„e\vf) 
(T(Z,  I  vf)  (7(0*  I  vf) 

a-{Z, I vf) o-(0* I vf) 

T'IZ, I vf) 

a-(Z, I vf) 

0^(2; I  "f) 
(T'CZ, I vf) 

0^(Z;   I   vf ) 

<T-{Z,  I  vf) 

- 1 

1  - p-{Z.,0\ vf) ' 
'^     -     '   '    o--(0*    vt) 

o^(Z, I vf) 

(5.4.206) 
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where one will want to substitute for CT^CZJ | vf) and (T(Z3 | vf). In solving the first two equalities in (5.3.54) 
explicitly for cP-iZ^, | vf), one proceeds by transposition to obtain 

^{Z^ I vj) = o^(Z3 I vf) [1 - p\Z,,Z^ I vf)] + p\Z^,Z, I vj) (T\Z^ I vf), 

where squared substitution from (5.4.194) into (5.4.207) leads to 

V(Z2 I  vf) 

(5.4.207) 

u\Zy I  vf)   =   Or2(Z3 I  vf)  -j  1    +   p2(Z2,Z3 |  vf) 

which may be rewritten as 

(72(Z3 I Vf) = C72(Z3 I Vf)    1 + p\Z^,e I vf) p2(Z3,e I vf) 

^(Z^ I vf) 

cr2(Z2 I vf 

CT\Z^ I vf) 

(5.4.208) 

(5.4.209) 

because of (5.4.205). Squared and unsquared substitution from (5.4.209) into (5.4.206) now allows one to write 

= p(Z„e| vf)/< 

p2(z,,e| vf)p^(Z„e| vf) 
cr^d. I vf) 
(T=(Z, I  vf) 

1 + p-(Z2,0| vf)p-(Z3,e| vf) 
cr(Z, I vf) 
ahZ, I vf) 

M>-p^(^.eivf)4|;i^; 
' o~(y*   vf) 

0--(Z2  I   vf) 
a-(Z, I vf) 

cr(e* I vf) 
p^(Z2,e|vf)p(Z„0ivf)^jg, j^„j 

(T-(Z2  I   vf) 
cr^(Z, I vf) 

(5.4.210) 

1 + p2(Z2,0| vf)p2cz3,e| vf) 
(r{Z-,_ I vf) 
(T^(Z2 I   vf) 

where placing the terms in the first braces under the first radical to the right of the equal sign over a common 
denominator, subtracting in the numerator and multiplying the resulting expression by the other expression in 
braces under the same radical yields 

1 - p2(Z2,e| vf) 

p(Z3,e I  vf)   =   p(Z3,0 I  vf) 

(j\e* I vf) 

0-2(0* I vf) 

0-'(Z2 I  Vf) 

CT\Z^ I vf) 
1 

1    +   p\Zj,e\  vf)p2(Z3,0|  vf) 

a-(e* I vf) 
p^(Z2,0| vf)p(Z3,0| vf) 

o-(0* I vf) 

cr'a^ I vf) 
.c^(Z2 I vf) 

cr2(Z2 I vf) 
CT^(Z2 I  vf) 

1 + p2(Z2,e I vf) p\z^,e I vf) 
V(Z2 I vf) 

<T2(Z2 I vf) 

(5.4.211) 

1 

In (5.4.211) there are four occurrences of the same bracketed expression. As a result, one will want to solve 
explicitly for this expression in order to provide further simplification in (5.4.211) through substitution. One 
begins by rearranging the first two equalities in (5.3.55) to obtain 

0-2(0* I vf) = o^(0* I vf) [1 - p\Z^,e I vf)] + p2(Z2,0 I vf) 0-2(0* I vf) , (5.4.212) 

where squared substitution from (5.4.195) into (5.4.212) allows one to write 

V(Z2 I  vf) 
0-2(0*  I  vf)   =   0-2(0*  I  vf) n    +   p2(Z2,0 I  vf) 

^{Z^ I  Vf) 
1 

Through division of (5.4.213) by 0^(0* | vf), one obtains 

o^(0* I vf) 
0-2(0*  I  vf) 

=    1   +   p2(Z2,0 I vf) 
cr2(Z2 I vf) 

cr2(Z2 I vf) 

(5.4.213) 

(5.4.214) 

where an explicit solution for the bracketed expression yields 
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V(Z2  I   Vf) 
0^(^2  I   Vf) 

-    1 
1 a\e* I vf) 

a\0* I vf) (5.4.215) 

the sought solution. After the four substitutions from (5.4.215) into (5.4.211), the cancellation of several terms 
and subsequent multiplications lead to 

p(Z3,e| vf) = p(Z3,e| vf 

p(Z3,e| vf) 

1 + p\Z„0 I vf) 
(r2(0* i vf) 
cr2(e* I vf) 

o-(0* I vf)       o-(0* I vf)^ 
o-(0* I vf)    o-(e* I vf) 

(5.4.216) 

1   +   p2(Z3,0|  vf) 
0-^(0* I vf) 
a\e* I vf) 

-  1 

where the numerator under the first radical on the right side of the equal sign in (5.4.216) can be removed from 
under the radical after subtraction. One then has 

p(Z3,e| vf) 
p(Z3,e| vf) = 

cr(0* I vf) 
o-(0* I vf) 

0-^(0* I vf) 
0-2(0* I vf)   ~ 

o-(0* I vf)      o-(0* I vf) 
a-(0* I vf)       o-(0* I vf) 

(5.4.217) 

1 + p\Z„e I vf) 
0-2(0* I vf) 
0^(0* I vf) 

-  1 

where the denominators on the right side of the equality are identical, thus permitting the addition of the 
numerators. After multiplying through the brackets on the second numerator on the right side of the equal sign 
in (5.4.217), the addition of the numerators yields 

P(Z3,0i vf) 
p(Z3,0| vf) = 

o-(0* I vf) 
o-(0* I vf) 

(5.4.218) 

+ p2(Z3,0| vf) 
0-2(0*  I  vf) 
0-2(0*  I  vf) 

where the item associated with Z3(vt), as it will be aliased, was also eligible to be chosen as the second item 
in the tailored test. The correlation of this Z^Xvf) with 0*(vf) for that ordering is given by (5.4.40). Thus, 
unsquared and squared substitutions from (5.4.40) into (5.4.218), while changing the aliased subscript from 2 
to 3, allow one to write 

af o-(0* I vf) 

p(Z3,0| vf) = 
Vl  + [af o-(0* I vf)] *^l2 

[gf (7(0* I vf)]2 - [a* a-(0* I vf)]2 
(5.4.219) 

1 + 
1  + [af o-(0* I vf)]2 

After placing the expression under the radical in the lower denominator of (5.4.219) on a common denominator, 
the subtraction of terms provides 
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af o-(0* I vf) 

p(Z3,01 vf) = ^ -' '    '        , (5.4.220) 
/l   +  [flf cr(0* I vf)]2 

*-,i2 y 1  + [af o-(0* I vf)] 

where multiplication of the numerator and denominator by their common denominator yields the result 

p,Z.,e\v,) = —Jl^^^M=. - ,. (5.4.221) 
V 1  + [a* cr(0* I vf)]2 

By definition, one has 

p{Z,,e 1 V?) =     ,    "'^"-^      , , (5.4.222) 
Vl  + la,{vf)]^ 

where a^iv^) is appropriate for ©*(vf) or 0*(vp after its standardization to a mean of zero and variance of 
unity. Upon squaring (5.4.222), one obtains 

pHZ,,e I vf) =  ,  [''f *,^l' •    ■ (5.4.223) 
' 1  + |a3(vf)]- 

where substitution from the squared result of (5.4.221), after transposition, provides 

k.(v!)]'      ^       K ^(0* I vf)l' V 4 224) 
1  + [a3(vf )J-       1  + [a? o-(0* I vf)]' ■ 

Upon clearing the denominators in (5.4.224), one obtains 

[a3(vf)]2 + [a,(vf)]2 [flf (7(0* I vf)]2 = [af (7(0* \ vf)\- + [a^)? [«f cr(0* I vf)J^     (5.4.225) 

where subtraction of the common expressions on both sides of the equality yields 

[a,{vr)]' = [at cx{0*\vi)Y.  :    ' ■ (5.4.226) 

Taking the square root of (5.4.226), one has 

a3(vf) = af o-(0* I vf), (5.4.227) 

indicating that a3(vf), appropriate for 0*(vf) or 0*(vf) after its standardization to a mean of zero and a variance 
of unity, is obtained by the multiplication of two knowns, af and cr(0* \ vf). Thus (5.4.221) provides a 
convenient expression for p(Z^,0 \ vf), which was one of the sought solutions. 

The Point of Dichotomization on Standardized Z3 Given tlie Outcome Vector 

The other solution one now seeks is a convenient expression for y3(vf), the point of dichotomization on 
Z3(vf) or, synonomously, Z3(vf) after its standardization to a mean of zero and a variance of unity. In obtaining 
this solution the rescaling of O* for which the parameter a3(vf) is appropriate will be defined. This definition 
will lead to a solution for fe3(vf). For completeness, C3(vf) will then be defined. At this juncture, both 
p(Z3,0 I vf) and ii3(vf) will be known. Consequently, y3(vf) will be known, because 73(vf) is by definition 
merely the product of p(Z3,0 | vf) and fc3(vf). After obtaining this solution the important property of invariance 
will be further considered. 

After incidental selections on 0* due to explicit selections on Z, and Z2(vf), O* can be standardized to 
a mean of zero and variance of unity. This standardization is accomplished in the usual manner through 

^*(vf) =  ,„^ I   ^,—, (5.4.228) 
(7(0*   I   vf) 
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where ^*(vf) is a realization of the continuous random variable 0*(vf) for which the parameter asCvf) is 
appropriate. The appropriate parameter ^3(vf) is obtained through 

where the expression on the right side of the equality resembles the similarly positioned expression in (5.4.228). 
This resemblance occurs because, consistent with the definition of the difficulty parameter, fejCvf) is rendered 
in the standard scale of ability, in this case that of e*(vf). The parameters OjCvf) and b^{v^) are, as usual, 
defined identically in both submodels. For the three-parameter normal ogive submodel, one has 

cM) = cf = C3. (5.4.230) 

Again as in the case of (3.3.65) and (5.4.49), this is because a change in the scale of ability leaves the lower 
asymptote of the regression of the binary, multiple-choice item on ability unchanged. 

Since 73(vf), the point of dichotomization on Z^(vf), is by definition 

yjCvf) - P(Z3,0| vf)Mv2*), '      ' (5.4.231) 

substitutions from (5.4.221) and (5.4.229) into (5.4.231), along with a cancellation of terms and divisions of 
the numerator and denominator by af, now yield 

^'^'^^ = [(«!)- +^(e* I vf)]- (5-4-232) 

the sought solution. In (5.4.232) one has a convenient expression for the point of dichotomization on Z,(vf) 
where the required inputs are known. 

The Property of Invariance 

Remember that the property of invariance pertains to the probability of passing item g. This probability 
must remain invariant for any particular level, rather than for any particular numerical value, of ability under 
changes in the scale of ability. Invariance is obtained by simple transformations of the item parameters a^ and 
b^ given a change in the scale of ability. Earlier, the property of invariance given an arbitrary prescription for 
the scale of ability was discussed in connection with (2.3.122). Again, in conjunction with (5.4.52), the property 
of invariance was discussed with respect to a change in the scale of ability resulting from the standardization of 
O* subsequent to the incidental selection on 6* imposed by explicit selection on Z,. Here the discussion will 
be extended to include a change in the scale of ability resulting from the standardization of 0* subsequent to 
the incidental selections on G* imposed by explicit selections on Z, and Zjivf). Extending equation (2.3.122), 
invariance requires the result 

yM = 7,(6*) = yj[d*ivf)] (5.4.233) 

where the third item is potentially any one of the remaining ip-2) unused items in the ability bank. The point 
of dichotomization ->'3(vJ) would be the lower limit of integration for the standardized conditional distribution 
of Z^ivi) given e*(vf), where the integral yields the probability of producing or recognizing a correct answer 
to the third item in the tailored test for a specific numerical value of 0*(vj). In this context, y,[d*{vf)] operates 
as did 73(0) in the context of (2.1.15). When the level of ability is arbitrarily fixed, y^iff^ivf)] must equal 73(6) 
even though the particular numerical values of e*(vf) and O are unequal because of intervening transformations 
on the scale of ability. Thus the probabilities yielding the item characteristic curve remain undisturbed when the 
equality in (5.4.233) is maintained. Given invariance, 73[^*(vf)] will be defined by 

73[0*(vf)] =  - a3(v2*) [e*(v2*) - b,{vf)] '   (5.4.234) 

under the necessary condition of equality asserted in (5.4.233). Substitutions from (2.1.15), (2 3 121) and 
(5.4.234) into (5.4.233) yield 

- a3(6> - ^3) =  - a*(0* - bf) =  - a3(v2*)[0*(v2*; - bT,{vi)\ (5.4.235) 
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where substitutions from (5.4.227), (5.4.228), and (5.4.229) into the rightmost member in the equality allows 
one to write 

- a^iO - bi) = - aUS* - fc?) = - aUe* - b^l (5.4.236) 

Subsequent substitutions from (2.3.118), (2.3.119), and (2.3.120) into (5.4.236) provide 

- 03(0 - b,) = - a^ie - bi) = - a^ie - bj) (5.4.237) 

in proof of both the necessary condition which demonstrates the property of invariance and the appropriateness 
of the parameters 03(vf) and bi(v%) for the continuous variable of transformed ability 6*(v}). 
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6. THE TAILORED TESTING ALGORITHMS IN 
RECURSIVE FORM 

6.1  Some Preliminary Recursive Relationsliips 

In developing the recursive formulation for the tailored testing algorithms it will be helpful to make use 
of a few conventions in notation. Through the application of these conventions succinct statements can be derived 
which summarize the major results of previous developments as well as provide important recurring relationships. 
For instance, the generalized outcome vector, v*_i, was first defined in Section 5.2. This vector is defined as 
containing the binary scores for the answers to the («- 1) previously chosen items along with their original 
subscripts within the ability bank. In this context, the entry for v*„, when n equals one represents the condition 
at the start of testing. Thus, the generalized outcome vg is a null entry, implied but absent until now. Under 
this convention, a|(vS) is identically a,, appropriate for ability 0*, or merely 6, that is, 0* in standard score 
form. This parameter is_defined by (2.2.19) when g is aliased to 1 for the first chosen item, g<". Accordingly, 
flzCvf), appropriate for 0*(vf), is defined in (5.3.47); and a3(vf), appropriate for 0*(v^), is defined in (5.3.112).' 
In general, then, one will find that a„(v*_,), appropriate for e*(v*^,), can be written compactly as 

a„(v*_,) = fl* cr(e* I v*_,)   for« =  1,2, ... ^,. (6.1.1) 

where it is to be noted that cr(0* | vg) is, by convention, merely a{0*) and (?, is the number of items in the 
tailored test for individual /. The reader may now review this recursive phenomenon through consulting (2.2.19), 
(5.3.47), and (5.3.112). Under the convention of generalized notation, one has 

a„(v*_,) = a„(v„_i) = a„(v;,_,) . (6.1.2) 

which is to say that this parameter is defined identically under both submodels.     " 

In similar fashion, Z?|(vg), appropriate for 9* or merely 6, that is, O* in standard score form, is identically 
bj, as defined by (2.2.20), when g is aliased to 1 for the first chosen item, g<". Accordingly, fejCvf), appropriate 
for 0*(vf), is defined by (5.3.49); and *3(vf), appropriate for 0*(vf), is defined by (5.3.114). In general, then, 
one will find that fe„(v*_|) can be written compactly as 

W-,)-^-;^^^;!;;-'^  for. ^1,2,...,, (6.1.3) 

where it is to be noted that fj,(e* \ vg) is, by convention, merely /LI(0*). The reader may now review this 
recursive phenomenon through consulting (2.2.20), (5.3.49), and (5.3.114). Under the convention of generalized 
notation, one has, then, 

*„(v*_,) = b„iv„_;) = b„iv'„_i} (6.1.4) 

which is to say that this parameter is defined identically under both submodels. 
Under these conventions, the parameter c„(v*_|) can be defined for the two-parameter normal ogive 

submodel 

c„(v„~i) = 0    for« =  1, 2, ... qi (6.1.5) 

where this parameter is of no consequence in the formulation. Viewed from this perspective, one finds that the 
two-parameter submodel results when c^ is set equal to zero for all g in the three-parameter submodel or when, 
in statistical terminology, the three-parameter submodel is degenerate in the parameter c^. Later this relationship 
will be used to derive the tailored testing algorithm for the two-parameter submodel from that of the three- 
parameter submodel by simply setting c, equal to zero for all g. In the three-parameter normal ogive submodel, 
one has 
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c„(v;_,) = c* = c„    forn = 1,2, ...?; y---- (6.1.6) 

as can be verified through consulting (3.2.14)—with n aliased to 1 for the first chosen item, g'"—(5.3.51), and 
(5.3.116). 

Under the conventions, the correlation between Z„(v*_|) and 0*(v*_,) is defined by 

a* a(0'* I v*_|) 
{1  + la*(r(0*| v*_,)]2}-^ 

p(Z„.e|vr,)= „   ,   ,:, LJ|"..;'\,.,   for.= 1,2,...,,, (6.1.7) 

where this recursive relationship can be confirmed through a review of (2.2.21)—with n aliased to 1 for the 
first chosen item, ^<'*—(5.3.48), and (5.3.113). One then has 

p(Z„,e|v*_,) = p(Z,„0| v„„,) = P(2„,0| v;,_,); (6.1.8) 

which is to say that this correlation is defined identically under both submodels. 
Under the conventions, y„(v%_,), the point of dichotomization on Z„(v*_,), is defined by 

y.M-.) = ..„.:"2,"'::.^::1\. for« = i,2,...,,, (6.1.9) 
bf,  - M(0*l v,t-i) 

[(a*)-2 + a^(0*\ v*^,)]- 

which in recursion summarizes (2.2.22)—when n is aliased to 1 for the first chosen item, g<"—(5.3.50), and 
(5.3.115). One has 

r„(v*-,) = 7„(v„-,) = y„(v;,-,) (6.1.10) 

indicating that the point of dichotomization is defined identically under both submodels. The density in the 
standard normal distribution at 7„(v*_,), <^[r„(v*_i)], is by definition 

</'[r„(v*-,)] = (277)-5exp{-.5 [y„(v*_,)]'}  for n = 1,2, ...,,. (6.1.11) 

where 

<^[r„(v*-,)] = 0[y„(v„-,)] = c/.[r„(v;,_,)] (6.1.12) 

because of (6.1.10). 
The probability of a correct answer to the nth item in generalized notation may be written as 

/'„*(v*-,) = c„(v*_,) + [1  - c„(v*„,)] 'J'[-r„(v*_,)]   forn =  1, 2, ... <?,. (6.1.13) 

A substitution from (6.1.6) into (6.1.13) to obtain submodel specificity allows one to write 

P>'„-^) = c„ + (1  - c-„) *[-7„(v;,_,)]   for« =  1, 2, ... q, (6.1.14) 

for the three-parameter case. In recursion (6.1.14) now summarizes (3.2.1) when n is aliased to 1 for the first 
selected item ^"', and (5.3.59). For the two-parameter normal ogive submodel, one merely substitutes from 
(6.1.5) into (6.1.13), while deleting the primes, to obtain 

P„(v„_,) = 4>[-r„(v„_,)]   for« = 1,2, ...,, ■      (6.1.15) 

which in recursion summarizes (2.2.1)—when n is aliased to 1 for the first chosen item, g<"—and (5.3.57). 
Notice that the deletion of the prime on v,',_| in obtaining (6.1.15) merely changes the interpretation of 

this probability from that of recognizing the correct alternative to a multiple-choice item to that of producing a 
correct answer to a free-response item. Thus one may write 

P,Ay'n-^) = '^[-JniK^x)]   forn =  1, 2, ... ,, (6.1.16) 

for the probability of recognizing the correct alternative given the three-parameter normal ogive submodel. 
In generalized notation, the probability of an incorrect answer to the nth item may be written as 

G,t(v*-,) = [1  - ^^(v*-,)] <f[r„(v*-,)]   forn =  1, 2, ... <?,. (6.1.17) 

A substitution from (6.1.6) into (6.1.17) to obtain submodel specificity allows one to write 

Q>'n-^) = (1  - O ^[y,A<-^)^   for" =  1, 2, ... q, (6.1.18) 
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for the three-parameter case. In recursion, (6.1.18) now summarizes (3.2.2) when n is aliased to 1 for the first 
chosen item ^•", and (5.3.60). As observed in connection with (5.3.65), one has 

e„(v;,-i) = 0[y2(v;,-i))   forrt = I, 2, ... <y,. ' (6.1.19) 

where this probability represents that of not recognizing the correct alternative as opposed to that of obtaining 
an incorrect answer to the nth item. Because of (6.1.10), this probability is equal to that given by 

G„(v„-,) = ^lr„(v„^,)l ■■' (6.1.20) 

which derives from rendering (6.1.17) submodel specific through a substitution from (6.1.5) while deleting the 
primes. In (6.1.20), one has the probability of producing an incorrect answer to the nth item for the two-parameter 
case. While (6.1.19) and (6.1.20) produce equal probabilities, their interpretations under each submodel are 
quite different. 

Equations (6.1.13) through (6.1.20) contain an expression in common. This expression is 0[*], which 
is by definition the cumulative normal distribution function or area under the standard normal curve given specific 
limits of integration from negative infinity to the generalized argument denoted by the asterisk. 

6.2 The Tailored Testing Algoritlim for the Three-Parameter Normal 
Ogive Submodel 

When one begins testing an individual, it is known that the individual is a member of the population of 
interest. Nothing else is assumed to be known about this individual. In this uninformed state, the mean of ability 
in the population of interest, /x(0*), is taken as the prior estimate of this individual's ability. Accordingly, the 
variance or squared error of this estimate is a^(0*), the variance or the squared standard deviation of ability in 
the population of interest. At this point, the parameters a*, b*, and c| are known for each item in the ability 
bank. As the nth item in this individual's tailored test, that item g is chosen for which 

%ui ^ (O* I v;,_,, [/;) = a^io* I v;,_,) (i - p=(z„e| v;,_,) (i - c,) J^^iil^iML) 

■    ■       for all ^ where g T'^•'", ^"', ... ^<"~i'       (6.2.1) 

provides the minimum value over the (p - n + 1) unused items in the ability bank. Notice that g^°\ by convention, 
places no restriction on the choice of ^'"> where « = I, 2, ... ^,.. The nth chosen item is presented to the 
individual. One of two outcomes is possible. This individual's answer can be correct or incorrect. If the answer 
to Item n is correct, the revised or updated estimate of the individual's ability is given by 

M(e* I v'n-uu'n = 1) = Me* I v;,_,) + p{z,.,e \ v,;,,) aio* \ v,;.,) (i - c„) %^^;   (6.2.2) 

and the variance of this revised or updated estimate of ability is provided by 

o^io*\v:,_,,u:, = 1)    , . ,...,. 

(6.2.3) 

If the answer to Item n is incorrect, the revised or updated estimate of the individual's ability is given by 

/x(0* I V;,_,,M;, = 0) = ^l(e* | v;,_,) - p(z,„e| v;,_,) a(0* \ v,;^,) ~~~;      (6.2.4) 

and the variance of this revised or updated estimate of ability is provided by 
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C72(0*| v;,_,x = 0) 

Given either outcome,'if the error of the estimate, aiO* | v,',), is equal to or less than the prescribed terminal 
error, e, 

(T{0* I v;,) =s e, (6.2.6) 

the testing is terminated. Otherwise the next item n is chosen, and the scenario as outlined for (6.2.1) through 
(6.2.6) is continued until the condition imposed by (6.2.6) is satisfied. The item satisfying this condition is by 
definition Item ^,. In application the terminal error, e, is prescribed by the practitioner. This prescription entails 
considerations that are presented later in Chapter 7. 

In proof of (6.2.1) through (6.2.6), it should be noted that the recursive formulation of this algorithm 
merely represents a summarization and extension of previous results. With respect to previous results: in choosing 
the item, (6.2.1) summarizes (5.3.30) and (5.3.91); in estimating ability given a correct answer, (6.2.2) sum- 
marizes (5.3.39) and (5.3.104); in estimating the variance of ability given a correct answer, (6.2.3) summarizes 
(5.3.45) and (5,3.109); in estimating ability given an incorrect answer, (6.2.4) summarizes (5.3.41) and (5.3.105); 
and in estimating the variance of ability given an incorrect answer, (6.2.5) summarizes (5.3.46) and (5.3.110)  
for the first two items in the tailored test. 

Appropriate substitutions into (6,2.1) through (6,2,5) from the outputs of the preliminary recursive 
formulation provided in Section 6.1 must be made in evaluating these equations. These substitutions render the 
inputs for (6.2.1) through (6.2.5) in terms of known values, that is, the mean, the variance, and the item 
parameters. The density function of the standard normal distribution, (/>[*], and the cumulative normal distribution 
function, $[*], can then be evaluated. 

At this juncture the tailored testing algorithm will be developed for the two-parameter normal ogive 
submodel. This development can be very brief. Given the tailored testing algorithm presented in Equations 
(6.2.1) through (6.2.6), it is only necessary to assume that guessing is ineffective. As a consequence, c, or c„ 
is zero and the primes can be deleted on all terms. This simplifying assumption leads to the algorithm presented 
in equations (6.3.1) through (6,3,6), It will then be verified that this simplifying assumption yields a formulation 
that summarizes the pertinent earlier results. Under the two-parameter normal ogive submodel, the scenario for 
tailored testing, excluding the formulation, proceeds as it did in the three-parameter case. 

6.3. The Tailored Testing Algorithm for the Two-Parameter Normal 
Ogive Submodel 

Again, when one begins testing an individual, it is known that the individual is a member of the population 
of interest. Nothing else is assumed to be known about this individual. In this uninformed state, the mean of 
ability in the population of interest, fiiO*), is taken as the prior estimate of this individual's ability. Accordingly, 
the variance or squared error of this estimate is CT^(©*), the variance or squared standard deviation in the 
population of interest. At this point, the parameters a*, b*, and c* are known for all the items in the ability 
bank. Since this submodel is degenerate in the parameter c*, c* is known to be zero for all these items. As the 
nth item in this individual's tailored test, that item g is chosen for which 

"^u, <^(0* I v„_,,f/,) = 0^(6* I V„„,)    1 - pHZ^,e\v„_0 
/',.(v„_,)G,(v„_,), 

for all g where g ¥= g<°>, g'", ,.. g<"-i>        (6,3.1) 

provides the minimum value over the (/? - «-h 1) unused items in the ability bank. Notice that g'°>, by convention, 
places no restriction on the choice of ^"" where « = I, 2, ... q,. The «th chosen item is presented to the 
individual. One of two outcomes is possible. This individual's answer can be correct or incorrect. If the answer 
to Item n is correct, the revised or updated estimate of the individual's ability is given by 

Me* I V„_,,«„  =   1)  =  Me* I V„_,)  +  p{Z„S I V„_,) (7(0* I v„_,) '^^^"^''"-'^^; 
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and the variance of this revised or updated estimate of ability is provided by 

(7^(0*1  V„_,,M„   =   1) 

= 0-2(0* I v„_,)    1 - p2(2„,0| v„^,)-—- —   -^-^ ^ y„(v„-i)M-      (6-3.3) 

If the answer to Item n is incorrect, the revised or updated estimate of the individual's ability is given by 

My„(v„-r 
e„(v„_,) M0* I v„„,,M„ = 0) = M(0* I V,,.,) - p(Z,„e| v„_,) cr(0* | v,,,,) "^i^f''""'?^ (6.3.4) 

and the variance of this revised or updated estimate of ability is provided by 

(r2(0* I v„_|,M„ = 0) ■     • 

2/-7    ^ I   .. ^   </>[')'«(»'„-l)]   J (/'[yXV,,-!)] = cr^e* I v„_.)    1 - p\Z„,Q I v„_|) ";^7 "- "    ";^"" -"' + y„(v„^,)     .       (6.3.5) 

Given either outcome, if the error of the estimate, cr(0* | v„), is equal to or less than the prescribed terminal 
error, e, > 

cr(e* I v„) « e, •      (6.3.6) 

the testing is terminated. Otherwise, the next item ;; is chosen, and the scenario as outlined for (6.3.1) through 
(6.3.6) is continued until the condition imposed by (6.3.6) is satisfied. The item satisfying this condition is by 
definition Item q^. 

In application, the terminal error, e, is prescribed by the practitioner. This prescription entails considerations 
that are presented later in Chapter 7. 

In deriving (6.3.1) through (6.3.6) from (6.2.1) through (6.2.6), it is necessary merely to delete the primes 
on all terms and set c^ or c„ equal to zero. For instance, the cancellation of the primes on P'n(y'n^{) is justified 
because setting c„ equal to zero in (6.1.14) yields a result that is identical to that given for P„{y>„^\^ in (6.1.15). 

In proof of this algorithm, it will now be verified that (6.3.1) through (6.3.5) summarize the previous 
results. With respect to previous results: in choosing the item, (6.3.1) summarizes (5.3.18) and (5.3.85); in 
estimating ability given a correct answer, (6.3.2) summarizes (5.3.35) and (5.3.102); in estimating the variance 
of ability given a correct answer, (6.3.3) summarizes (5.3.43) and (5.3.107); in estimating ability given an 
incorrect answer, (6.3.4) summarizes (5.3.37) and (5.3.103); and in estimating the variance of ability given an 
incorrect answer, (6.3.5) summarizes (5.3.44) and (5.3.108)—for the first two items in the tailored test. 

Appropriate substitutions into (6.3.1) through (6.3.5) from the outputs of the preliminary recursive 
formulation provided earlier in Section 6.1 must be made in evaluating these equations. These substitutions will 
render the required inputs for (6.3.1) through (6.3.5) in terms of the known values, that is, the mean, the 
variance, and the item parameters. The density function of the standard normal distribution, (/>[*], and the 
cumulative normal distribution function, (?'[*], can then be evaluated. 

6.4. A Bayesian Sequential Algorithm 

A Bayesian sequential procedure for adaptive or tailored testing was published earlier by Owen (1975). 
In this publication the one-item situation was considered. The selection of this item was based on minimizing 

U, p, g) = Vo jl  - (1  - g)i\ + Vo"' p-2)-, ^^^j, (6.4.1) 

the Bayesian preposterior risk. Ability, 0, in this context was assumed to be distributed normally with a mean 
Mo and variance VQ. The parameters dj, p,, and g, were parameters of difficulty, discriminating power, and 
guessing, respectively. The functions 0(D) and <t>{D) were those of the standard normal distribution, its probability 
density and cumulative distribution functions, respectively, where the argument D was given as 

Vp-- + Vo .    ■ 
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and A was given by '■     .     •   ■ ■, ■ 

:     . A = g + {\  ~ g) cP(-D).     . 

The estimator of ability given a correct answer was provided as 

^(©1 1) = Mo + (1  - g) Vo(p-2 + Vo) ., 0(/)). 

and the estimator for the variance of abihty given a correct answer was provided as 

Var(e| 1) = Vo    1 - (I - g)(l +p-2y-i)- (A(£>) g) 4>(D) 
D 

The estimator of ability given an incorrect answer was provided as 

%(0\ 0) = Mo - Vo(/5-2 + Vo)- (l>iD), 
0(D)' 

and the estimator of the variance of abihty given an incorrect answer was provided as 

Var(0|O) = Vg    1  - (1 Vo"') 
4>(D) 
<P(D) 

D 

(6.4.3) 

(6.4.4) 

(6.4.5) 

(6.4.6) 

(6.4.7) 

Because this formulation was recursive, Owen suggested that this one-item situation be repeated until V,„ the 
variance of ability after n items, was acceptably small. 

6.5. The Comparison of Algorithms 

The parametersp,, d-,, and g, in the Owen publication correspond to a*, b*, and c* in this report. Owen's 
e, assumed to be normally distributed with a mean M„, and variance VQ, corresponds to 6* in this report, which 
is assumed to be normally distributed with a mean, /JLO* \ v^,), and variance o^(9* \ v^). Translating Owen's 
D, one has 

D 
bf - /x(0* I v^) 

[(af)-2   +   0-2(0*  I  ^;^)J 5 

where a substitution from (6.1.9) for n equal to one into (6.5.1) yields 

D = y,(vi). 

A translation of Owen's A of (6.4.3), along with substitutions from (6.1.6), provides 

A = c, + (1  - C) 0[-y,(vi)] 

where a substitution from (6.1.14) for n equal to one into (6.5.3) yields 

A = p\ivoy, 

and it is clear after a substitution from (6.5.2) into (PiD) that one has 

■_        . ^,        ..       _ 0(O) = $[y,(Vo)] = e,(v^) 

because of (6.1.19) when n equals one. Through a translation of terms in (6.4.1) and substitutions from (6.5.2), 
(6.5.4), and (6.5.5) into (6.4.1), one may write the Bayesian preposterior risk as 

(6.5.1) 

(6.5.2) 

(6.5.3) 

(6.5.4) 

(6.5.5) 

Kb*, al, cf) = aHO* I vo) (I  - c*) 

for the first selected item g*' * where 

1 
{1  + [a| (7(0* I v;)]-2}       1  + [a* a(0* \ v'^)]' 

{1  + [a*a{e*\v',)\-^}  P',{vi) Q^{v',) 

[a* a(0* I vA)]2 
—, = pHz,,e I Vo), 

(6.5.6) 

(6.5.7) 
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because of (6.1.7) and (6.1.8) when n equals one. Substituting from (6.1.6) and (6.5.7) into (6.5.6), one has 

Kbt, <, c*) = crHO* I vi) (l - pHZ„e I vi) (1 - c,) ^IKQ^Q (6-5.8) 

or, because of (6.2.1), 

Kb*, a*, c*) = %u; orHe* I v^, U',), (6.5.9) 

the minimum value provided by the first chosen itemg'". Through a translation of terms in (6.4.4) and substitutions 
from (6.5.2) and (6.5.4), one obtains 

%ie* 11) = M(e* I vo) + j^^,^., ^ ^,(^, I ^,)j,        ^T^,;7^       - (^^.lO) 

where multiplication of the numerator and denominator of the first fraction in the rightmost term in (6.5.10) by 
af, allows one to write 

*.«*ln .«*! afcT(e*\vo) a(0* \ vj) H - rf) (AK)] 
^(0* i 1) = Me* I Vo) + {, + f,* ,(e* I vi)]^}-^ ?iK^ •     ^'-'-"^ 

One can now substitute from (6.1.6) and (6.1.7), for n equal to one, into (6.5.11) to obtain 

«(0*| 1) = M0*|vo) + p(Z,,e|vi)cr(0*| vi)(l  - c,)^^^^ (6.5.12) 
"i(VoJ 

or 

'g(0* I 1) = M(0* I Vo, «i = 1), ■     ^^    ' (6.5.13) 

because of (6.2.2) when n equals one. Through a translation of terms in (6.4.5) and substitutions from (6.5.2) 
and (6.5.4) into (6.4.5), one may write 

Var(e* I 1) 

= aHe*\vo){\ - „ , ,„. „.^. i..,.,-2i  ^;(,.)  I ^7^;;T^ y,(vo)[), (6.5. i4) 

where substitutions from (6.1.6) and (6.5.7) into (6.5.14) allow one to write 

Var(0* I 1) ■ - , . 

or merely 

Var(e* I 1) = o-^O* I vi, «i = 1) ' (6.5.16) 

because of (6.2.3) when n equals one. Through a translation of terms in (6.4.6) and substitutions from (6.5.2) 
and (6.5.5) into (6.4.6), one obtains  . .<   ... 

where multiplication of the numerator and denominator of the first fraction in the rightmost term in (6.5.17) by 
af, allows one to write 

^   ,   , af (T(0* I vi) a-iO* \ vi) </)[y,(vi)] 
i(e.|o, = M(9-|>;)-),^i:,y„eJ|,;,PP ^;<;^, ■ (".w 
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One can now substitute from (6.1.7), for n equal to one, into (6.5.18) to obtain 

%{6* 10) = Me* I vi) - p{Z„e I vi) cT{e* \ v'^) '^'7'/?^ (6.5.19) 

or 

%(e* 10) = M(e* I "i,«; = o) (6.5.20) 

because of (6.2.4) when n equals one. Through a translation of terms in (6.4.7) and substitutions from (6.5.2) 
and (6.5.5) into (6.4.7), one may write 

where a substitution from (6.5.7) into (6.5.21) leads to 

Var(0* I 0) = c^(e* I W,) (. - ,HZ^,0 | W.) ^^ j^f^ + „(vi)|) (6.5.22) 

or merely 

Var(e* I 0) = a^{0* \ v^ u\ = 0) (6.5.23) 

because of (6.2.5) when n equals one. 
In the developments culminating in (6.5.9), (6.5.13), (6.5.16), (6.5.20), and (6.5.23), it has been proved 

that the tailored testing algorithm for the three-parameter normal ogive submodel as based on the selection or 
rejection analogy is an identity of the Bayesian sequential algorithm provided by Owen. Since both algorithms 
are recursive, proof of identity in the one-item situation is sufficient. Notice also that the simplifying assumption 
that guessing is ineffective in the Bayesian case would yield an algorithm for the two-parameter normal ogive 
submodel. This recursive algorithm would necessarily be an identity of the recursive algorithm provided in 
Section 6.3 for the two-parameter normal ogive submodel. A demonstration of submodel degeneracy under this 
assumption was given there. 

It is hoped that the exposition in this report based on the selection or rejection analogy has improved the 
accessibility of the Owen Bayesian algorithm, in particular, the accessibility for psychometricians who are 
comfortable with selection theory, yet unfamiliar with Bayesian statistics and terminology. 
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7. THE RELIABILITY OF THE TAILORED TESTING 
PROCESS 

In Chapter 4 it was mentioned that the process of tailored testing produced an individualized test for each 
examinee. Algorithms were developed for this process in Chapters 5 and 6. This individualized process will be 
numerically illustrated in Chapter 8. In Chapter 8 it will become apparent that each test is potentially unique. 
Reliability, of necessity, then must be considered a property of the results of the process rather than a property 
of a specific test form. This aspect of tailored testing stands in sharp contrast with conventional pencil-and-paper 
testing where reliability is a property of a specific printed form. In this chapter, an index of reliability for the 
results of the process of tailored testing will be derived from selection theory. In addition, the implications of 
this index with respect to the control of the process will be enumerated; and further features of this formulation 
will be discussed. 

The index of reliability represents a binary analogue of the squared multiple correlation. It possesses the 
following similarities with reliability in classical theory: (a) this index represents the correlation between equi- 
precise estimates of the same ability which is analogous to the correlation between parallel forms, and (b) the 
square root of this index represents the correlation between equiprecise ability estimates and true ability, which 
is analogous to the correlation between test scores and true score. 

7.1  The Derivation of an Index of Reliability for the Tailored Testing 
Process 

In this derivation it is assumed that the partial variance of the criterion variable 0*(vg), or merely 0*, 
remains unchanged by explicit selections on the partialled variables Z„ where n = 1, 2, ... <y,. This assumption 
is algebraically expressed in 

cT^{0* I vo*) - /3(v„*)' I[Zvo*),Z(vo*)] /3(v„*) 

= (r\0* I V*) - /3(v*r I[Z(v*),Z(v*)] /3(v*,), (7.1.1) 

where both sides of the equality represent partial variances; on the left, that of 0*(vg) or merely O* before the 
qi explicit selections, and on the right that of 0*(v*.) after the q, explicit selections on the continuous variables 
Z„. In (7.1.1), /3(vg) is a vector of least squares partial regression coefficients predicting 0*{v%) from the Z„; 
and j8(v*.) is a vector of least squares partial regression coefficients predicting 0*(v|,) from the Z„(v|.). The 
variance-covariance matrices, X[Z{v%), Z(vJ)] and I^[Z(vJ,),Z(vJ.)], are those for the Z„{v%), or merely the Z„, 
before the explicit selections, and the Z„(v*.), the Z„ after ^, explicit selections, respectively. The matrix operations 
on the right side of both equalities in (7.1.1) yield expressions that are familiar from multiple linear regression. 
From the least squares apparatus one has 

/3(v«*)' 2[Z(vo*),Z(vo*)] /3(vo*) = (7^(0* I vo*) Rlo*-z,.z,. ..v.,, \ v-) (7.1.2) 

as the partialled or predicted variance in 6*(v%); and as the partialled or predicted variance in 0*(v*), one has 

/3(v*)' 2[Z(v*),Z(v*)] /3(v*) = aHO* \ v*) Rte-A.z,. ...z,„ | vj,,- (7.1.3) 

In (7.1.2) and (7.1.3), the squared multiple correlations, the R}*^, are those before and after the explicit selections, 
the latter squared multiple correlation being subject to restriction in range. Substitutions from (7.1.2) and (7.1.3) 
into (7.1.1), along with some rearrangement, lead to 

a\e* I vo*) [1  - ^?e-z„/,. ...z„ ! .*J = (^^0* \ v*) [1  - R}e-A.z,. ,..z,„ | v^l' (7.1.4) 

a form that is reminiscent of (5.3.4) and (5.3.55). A solution of (7.1.4) for cr(0* \ v*p, the restricted variance 
of ability at the termination of the tailored test for individual /, yields 
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cPie* i V*) = aHe* i vo*) [1  - ^?e..z,.Z3. ...z,, | ..,1 (7,1.5) 

+ o^iO* I V*) Rfe*.z,.z: 
/.■'. '^o. I K,) 

where the last term on the right in this equation represents the predictable variance given the full linear regression 
of O* on the Z„ which is lost through estimating ability from the binary outcomes or item scores. This term 
may be seen to decrease in value as the number of items in the test increases. An increase in the number of 
items increases precision or reduces cr^(0* | v*.); and continued explicit selections on the Z„ result in a more 
severe restriction in range, which is accompanied by a reduction in the squared multiple correlation, 
^(Vzi.z,, ...z,. I v*^y The important implication here is that with properly configured ability banks the full power 
of multiple linear regression can be approximated by estimating ability from binary outcomes or item scores. 
Notice that the output of (7.1.5) approaches, as n increases, the squared standard error of estimate, the first term 
on the right side of (7.1.5), because the numerical value of the last term on the right side of (7.1.5) becomes 
negligible. 

In (7.1.5) the within-individual variance has been examined. Knowledge of the expected value of this 
variance over individuals will allow us to solve for 

o-HO* I v^) - %f a\e* I V*) 
'^   =  2,a* I   *^  (7-'■6) 

because a^(Q* \ vg) is known. The quantity provided by (7.1.6) is commonly known as the correlation ratio. 
In this context it indexes a curvilinear relationship unless the CT^(0* | v*.) are held constant across individuals. 
When the tailoring process is begun, linearity of regressions and homoscedastic partial variances are assumed. 
If the process terminates with homoscedastic partial variances, the regression of the ability estimates will be 
linear. Termination of the tailored tests while satisfying the condition of equiprecision, guarantees homoscedastic 
partial variances about the linear regression of the ability estimates. There is something novel here. An ability 
estimate is a point on the line of regression of 0*(vS), or merely O*, on the Z„ for each individual /. Equiprecision 
at the termination of testing over the individuals (, where / = 1,2, ... A', renders the A' linear regressions collinear. 
The ability estimates for all individuals will then form a linear regression. Given a linear regression, one has 

as the squared linear correlation between the 0* and the ability estimates, the ^t(0* | v*). In the rightmost 
equality of (7.1.7), the constant variance at the termination of tailored testing replaces the expectation in the 
centered equality, because the expectation of a constant is the constant, in this case the terminal variance e^ 
Equation (7.1.7) may also be written as 

p[M(e* I v*),/x(0* IV*)] =   '    ''y ~ ' (7.1.8) 
cr{0* I ^"0) ■ 

the linear correlation between distinct ability estimates, the )x(0* \ v*), and the ix{0* \ v* ) of equiprecision. 
In (7.1.7) and (7.1.8) one has an index of reliability for the results obtained through the tailoring process. As 
n increases and the last term on the right in (7.1.5) vanishes, one then has 

£2   =   ^,^(0*|,*)[,    -  /?2 Z,, ...Z,, I V.,] 
"       "    " (7.1.9) 

= (r2(0*|vo*)[l  - /?,V.z,.z,. ...z„, I v*,]. 

because the expectation of a constant is the constant. Upon substituting (7.1.9) into (7.1,7) and its identity 
(7.1.8), one may write 

pHO,ix(0* I V*)] = plfjiiO* I v*),M(0* I V*)] = Rle*-x,.x,. ...z„ | v*,) (7.1.10) 

as the upper bound to this index of reliability when the ^,, or the <?, and the r, are increased indefinitely. This 
upper bound represents the squared multiple correlation, constant for sets of Z„ over individuals, that is obtainable 
using the full multiple linear regression equation for the regression of 0*(vg), or merely 0* on the <7, or the r, 
Z„ for all individuals. 
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7.2. The Index of Reliability and Its Innplications for Practice 

The terminal variance or its square root e, the terminal error, can be prescribed. It is a constant in the 
tailoring process. As a constant in the process, the prescription must occur in advance, because € is as applicable 
to the first as it is to the last tailored test. The variance of 0*, cr(0* | vg), is fixed or known at beginning of 
the tailoring process. Consequently, a prescribed e determines the outputs of (7.1.7) and (7.1.8), the reliability 
of the results obtained through the tailoring process. A prescription for e is, therefore, a specification for the 
reliability of the results obtained through the tailoring process. One can then explicitly solve (7.1.7) for e given 
a desired lower limit to the reliability as 

e = oiO* I vo*) VI - p'{e,iJ-iO* I V*)] (7.2.1) 

and use the output of (7.2.1) as the terminal error in either (6.2.6) or (6.3.6)—depending on the submodel 
involved. 

In practice, tailored tests are terminated when cr(0* | v*) is at most e or when 

o-(0* I V*) « e      ■ ■ (7.2.2) 

first obtains. As a result, the outputs of (7.1.7) and (7.1.8) represent a lower bound to the actual reliability of 
the results obtained through the process. The error in estimating ability is actually less than that used in obtaining 
the lower bound to the reliability as given by (7.1.7) and (7.1.8). The actual reliability approaches the lower 
bound as e becomes more stringent because the item-to-item decrement in a{0* \ v*) becomes less and less as 
finite n in the tailored test increases. Thus, e is more closely approached at termination. For typical ranges of 
reliability, say, from .8 and greater, actual reliability will closely approach this lower bound. 

Notice that (7.1.7) provides a population parameter. The actual correlation between O* and /x(0* | v* ) 
in random samples from the population of interest is an estimate of the parameter that has the output of (7.1.7) 
as its lower bound. It should be pointed out that the output of (7.1.7) has little relevance to the actual correlation 
between O* and fji{0* \ v* ) in biased samples with respect to the population of interest. This situation, of 
course, points out the critical requirements of defining the population of interest prior to parameter estimation 
and of maintaining that definition in the tailoring situation. 

The critical requirements of accurate estimates for the item parameters and of an ability bank with a 
proper configuration of item parameters were discussed earlier in Chapter 4. These critical requirements must 
be met in order to effectively practice tailored testing as advanced in this report. 

In the empirical study alluded to earlier (Urry, 1977), the actual reliabilities, after taking attenuation in 
the paper-and-pencil test into account, exceeded the lower bounds to the reliability for some eight levels of e. 
In this study, these lower bounds ranged from .70 to .93. This particular empirical study, therefore, provides 
convincing evidence that the basic assumptions of the three-parameter normal ogive submodel and the tailoring 
algorithm for the three-parameter normal ogive submodel can be reasonably well met with extant multiple-choice 
items. 

There are several desirable consequences ensuing from the method of tailored test termination described 
in connection with (6.2.6) and (6.3.6). These consequences should be noticed: a comprehensive evaluation of 
all basic assumptions is enabled; process reliability is rendered controllable; equiprecision in ability estimation, 
an essential component in test fairness, is monitored; and subsequent applications of tailored test results are 
rendered more tractable because linear relationships have been maintained. 

This method of tailored test termination can be extended to the case where several ability estimates are 
obtained for each individual.These several estimates are derived through the tailoring of several tests given the 
items from each of several well-conditioned ability banks. This extension of the method, its basic assumptions, 
and its practical value will be discussed in a subsequent report. In brief, the value of this extended method resides 
in providing the bases for the emergence of tailored testing systems. A basis is provided for: the communication 
of users' needs to the tailored testing system; and the monitoring of the tailored testing system with respect to 
how well these needs are being met. In other words, the products of the tailored testing system can be defined; 
and the quality of these products can be monitored. 
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8. A NUMERICAL ILLUSTRATION OF A TAILORED 
TEST 

For the purpose of illustration, the tailored testing algorithm for the three-parameter normal ogive submodel 
will be used. This algorithm is currently more relevant given the available data bases. In this illustration, the 
number of items in the ability bank has been restricted to twenty. This restriction would be unrealistic in 
applications, but is very convenient for the purpose of illustration. It also reduces the computational effort, 
making the mathematical problem more manageable for those who might wish to benefit from practice with the 
numerical process. As a further unrealistic but convenient restriction, the actual text of the items in the ability 
bank will not be considered. 

8.1. Initialization of the Process 

Before testing can begin, the item parameters for the/? items in the ability bank must be known; the scale 
of measurement for ability must be prescribed, and a terminal error, e, must be determined. In practice, the item 
parameters must be estimated. The item parameters appropriate for O where the mean of 0, IJ.{0), and the 
variance of 6, o^(9), are zero and unity, respectively, have been estimated in a large data set where the numbers 
of items and individuals were both sizable. The number of items for the ability bank was subsequently restricted 
to twenty. The parameter estimates a^, b^, and Cg are presented in Table 8.1.1. It has been decided that the 
mean of the ability estimates should be 100 and the variance of these estimates should be 400. This decision 
was based on a requirement to render the ability estimates in a familiar scale with a mean of 100 and a standard 
deviation of 20. There is also a requirement that the reliability of the resulting ability estimates be .90. This 
also means that the correlation between the ability estimates and true ability will be .95. In order to fulfill the 
joint requirements, /Li(0* | VQ) will have to be set equal to 100; and a^iO* \ VQ) will have to be set equal to 
444.4444. The estimates of ability are regressed estimates, thus the variance of O* must be set such that 

o^[Me* I v;,)] = p-[0,M0* I v;,)] o-ne* | vp ■ ^     (8.1.1) 

where O^[/LI(0* | vi)] is the desired variance of the estimates of ability and p^l6,fx{0* | v^.)] is the lower bound 
to the reliability, in this case 400 and .90, respectively. The numerical solution for the required cr^iO* \ VQ) is 
then 444.4444 where the standard deviation, aiO* \ VQ), is 21.0819. The appropriate terminal error, e, is provided 
by (7.2.1) as 6.6667. At this level of prescribed reliability, the actual reliability of the ability estimates obtained 
through the tailoring process will closely approach the lower bound of .90. Thus, the obtained mean and variance 
will approach the desired mean and standard deviation in large samples from the population of interest. A 
complete discussion of tailored testing reliability was given in Chapter 7. 

At this juncture, one has prescribed /Lt(0* | VQ), a^{0* \ VQ), and, consequently, oiO* \ VQ). Also, e, the 
terminal error, has been calculated. The parameters a*, b*, and c* that are appropriate given the prescription 
can now be obtained. The use of the conventional notation for the estimates, that is, a^, b^, and c^, will be 
discontinued. In doing this it is tacitly assumed that the estimates of the parameters presented in Table 8.1.1 are 
sufficiently accurate for the population of interest. The appropriate parameters are presented in Table 8.1.2. 
These parameters are obtained through the invariance transformations given in (2.2.17), (2.2.18), and (3.2.14) 
for the a*, the b*, and the c*. ■ - ■■ 

8.2. The Testing of the Individual 

As the testing of this individual is begun, it is known that the individual is a member of the population 
of interest. Thus the prior, least squares estimate of ability is JLI(0* | VQ) or 100; and the prior estimate of the 
variance of this ability estimate, r{0* \ VQ), is 444.4444. The testing of this individual will continue until the 
error of the estimate of ability, a(0* \ v^, becomes equal to or less than e or 6.6667. 
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TABLE 8.1,1 
Estimated Parameters for the Items in the Ability Bank Given 6 Where \x.(Q) Equals Zero and a-(e) Equals Unity 

Estimated Parameters 

Item 0^ k Co 

(fi) 
X 

1 1.96 -1.92 .16 
2 2.36 -1.71 .23 
3 1.88 -1.50 .21 
4 2.41 -1.29 .22 
5 2.10 -1.09 .19 
6 2.16 - .92 ■'  .17 
7 2.06 -.74 ,22 
8 2.33 -.49 .15 
9 1.85 -.28 .16 

10 2.61 -.11 .11 
11 2.09 .12 .14 
12 2.50 .31 .22 
13 2.19 .51 .13 
14 2.07 .69 .20 
15 1.80 .93 .14 
16 2.23 1.08 .21 
17 1.82 1.32 .13 
18 2.53 1.53 •   .20 
19 1.97 1.70 .16 
20 2.28 1.94 .18 

20 

Item 1 can now be chosen. In Table 8.2.1 a numerical summary is presented of the process resulting in 
the choosing of Item 1. For convenience in exposition, the numerical summaries for the choosing of each of the 
items in this tailored test will have a similar structure. For purposes of clarity, the conventions of recursive 
notation introduced in Section 6.1 will be observed in these numerical summaries. In these summaries and for 
columns (2) through (11) of the table, the equation involved in producing the tabled entries will be identified. 
In column (1), the item's subscript within the ability bank is presented. Columns (2), (3), and (4) provide the 
parameters a^{vi), b^iv^), and c^ appropriate for standardized 0*(vo), by convention 0*(vo), or merely O. These 
parameters are obtained from (6.1.1), (6.1.3), and (6.1.6) for n equal to 1. The required inputs for these equations 
are a*, b*, and c| as given in Table (8.1.2), and ix{e* \ vi) and o-(e* | VQ) or 100 and 21.0819, respectively. 
Within the rounding error introduced in Table 8.1.2, these parameters are identical to the corresponding estimates 
in Table 8.1.1. Sufficient accuracy has been assumed for these estimates. In column (5), one has the correlation 
between Z.Cvo) and 0*(vo), or merely Z^ and 0*,p(Zg,0 | VQ), as provided by (6.1.7) for n equal to I; because 
each item in the ability bank is, as of now, potentially Item 1. The point of dichotomization on Z^ivo), y,(vo), 
is given in column (6). It is obtained most readily by the row-wise multiplication of columns (3) and (5), which, 
within rounding error, results in the identical output of (6.1.9) under the circumstance that Item I is being sought.' 
The density in the standard normal distribution at r^,(vo), (f>[yg{vo)], is presented in column (7). The density is 
obtained from (6.1.11). The probability that this individual will recognize the correct answer to multiple-choice 
item g, Pf,ivo), is presented in column (8) and is obtained from (6.1.16) under the circumstance that Item 1 is 
sought. Column (9) contains the probability that this individual will not recognize the correct alternative to 
multiple-choice item g, Qf,ivo). This probability is obtained most readily as the row-wise complement of column 
(8), that is, [I - P^(Vo)], which is identically the output of (6.1.19) under this circumstance. Column (10) 
presents the probability of obtaining a correct answer to multiple-choice item g, Pg{vo). These numerical values 
are obtained from (6.1.14) for n equal to 1 where each item in the ability bank is potentially Item 1. In column 
(11) one has the expected values of the variance of the ability estimate, %u ■ a^(0* \ Vo,U'g), given the possible 
outcomes for each item. Each expected value is obtained from (6.2.1) using o^{0* \ VQ) or 444.4444 and the 
row-wise entries in columns (4), (5), (7), (9), and (10) as inputs. Given the entries in column (11), the most 
informative item is sought, that is, the item which, when responded to by this individual, is expected to reduce 
most the variance of the ability estimate. As mentioned earlier, this reduction increases the precision of the 
ability estimate or, analogously, most restricts, in expectation, the variance of ability for that subpopulation 
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TABLE 8.1.2 ,^ „       „ 
Parameters for the Items in the Ability Bank Given Q* Where \x(e*) and gje*) Have Been Prescribed 

Item 

1 .09297 

l ■•■ .11194 

3 .08918 

4 .11432 

.5 .09961 

• 6 .10246 

: 7 ■■ . .09771 

8 .11052 

9 .08775 

10 .12380 

11 .09914 

. 12 .11859 

.13 .10388 

■ tt- ■ 
.09819 

15 .08538 

16 .10578 

17 .08633 

18 .12001 

19 .09345 

20 .10815 

Note.  M.(e*) = 100.00; 0^(0*) = 444.4444; p = 20. 

Parameters 

59.5228 
63.9500 
68.3772 
72.8044 
77.0208 
80.6047 
84.3994 
89.6699 
94.0971 
97.6810 
102.5298 
106.5354 
110.7517 
114.5465 
119.6061 
122.7684 
127.8280 
132.2552 
135.8391 
140.8988 

£■* 

.16 

.23 

.21 

.22 

.19 
-17 
.22 
.15 
.16 
.11 
.14 
.22 
.13 
.20 
.14 
.21 
.13 
.20 
.16 
.18 

which would have been selected or rejected had explicit selection actually occurred on the continuous variable 
Z|. In column (12) it is indicated that the item subscripted 10 within the ability bank is to have 1 as its subscript 
n within the tailored test. As can be noted in column (11), this item provided the minimum expected value for 
the variance of the ability estimate given the p items in the ability banlc. This minimum expected value was 
244.4, thus identifying item 1 in the tailored test as Item 10 from the ability bank. According to convention, 

then, g*" equals 10. 

Table 8.2.1 
Numerical Summary for the Choosing of Item I 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Item ag(V|'|) fc,(v,',) c^ p(A^o\ v,; )  7<(v,',) *[T,(v;,)] PM) e,(v;,) P'M>^ %u'a^(0* 1 v'oM',) n 

(S) (6.1.1)" (6.1.3) (6.1.6) (6.1.7) (6.1.9) (6.1.11) (6.1.16) (6.1.19) (6.1.14) * (6.2.1) 

1 1.9600 -1.9200 .16 .8908 -1.7103 .0924 .9564 .0436 .9634 384.2 

2 2.3599 -1.7100 .23 .9207 -1.5745 .1155 .9423 .0577 .9556 374.2 

3 1.8801 -1.5000 .21 .8829 -1.3243 .1660 .9073 .0927 .9268 356.7 

4 2.4101 -1.2900 22 .9236 -1.1915 .1962 .8833 .1167 .9090 337.2 

5 2.1000 - 1.0900 .19 .9029 -.9841 .2458 .8375 .1625 .8684 318.8 

6 2.1600 - .9200 .17 .9075 -.8349 .2816 .7981 .2019 .8324 301.2 

7 2.0599 - .7400 .22 .8996 - .6657 .3197 .7472 .2528 .8028 303.2 

8 2.3300 - .4900 .15 .9189 - .4503 .3605 .6737 .3263 .7227 268.6 

9 1.8499 - .2800 .16 .8797 -.2463 .3870 .5973 .4027 .6617 282.1 

10 2.6099 -.1100 .11 .9338 -.1027 .3968 .5409 .4591 .5914 244.4 1 

11 2.0901 .1200 .14 .9021 .1082 .3966 .4569 .5431 .5329 275.4 

12 2.5001 .3100 .22 .9285 .2878 .3828 .3867 .6133 .5217 307.6 

13 2.1900 .5100 .13 .9097 .4639 .3582 .3214 .6786 .4096 296.7 

14 2.0700 .6900 .20 .9004 .6213 .3289 .2672 .7328 .4138 341.6 

15 1.8000 .9300 .14 .8742 .8130 .2867 .2081 .7919 .3190 349.4 

16 2.2300 1.0800 .21 .9125 .9855 .2455 .1622 .8378 .3381 382.3 

17 1.8200 1.3200 .13 .8764 1.1569 .2043 .1237 .8763 .2376 384.9 

18 2.5300 1.5300 .20 .9300 1.4229 .1450 .0774 .9226 .2619 417.7 1 

19 1.9701 1.7000 .16 .8917 1.5159 .1265 .0648 .9352 .2144 420.8 

20 2.2800 1.9400 .18 .9158 1.7766 .0823 .0378 .9622 .2110 434.2 

"Numbers in parentheses indicate the equations providing the column entries. 
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This individual then responds with a correct answer to Item 1. Thus the outcome vector v\ contains the 
entry u[^^o^ = 1, where the tenth item in the ability bank has been aliased by the subscript 1 within the tailored 
test. Because this individual's answer to Item 1 was correct, the estimate of ability can be revised by using 
(6.2.2) where the required inputs are ^(0* | v^), or 100, (j(0* | v^), or 21.0819, and the unrounded values 
correspondmg to the entries in Table 8.2.1 from columns (4), (5), (7), and (10), for g equal to 10, the subscript 
of the aliased item. In this case, the evaluation of (6.2.2) yields 111.7567 as the updated estimate of this 
individual's ability, /i(0* | v[). Accordingly, the variance of this estimate of ability can be revised through the 
use of (6.2.3), where the required inputs are 0^(9* \ v\) or 444.4444, and the unrounded values corresponding 
to the entries in Table 8.2.1 from columns (4), (5), (6), (7),and (10) for g equal to 10, the subscript of the 
aliased item. In this case, the evaluation of (6.2.3) provides 282.4501 as the updated variance of this estimate 
of ability, a^{0* \ v\). The error of this estimate, a{0* | v[), is therefore 16.8063. Since 16.8063 is greater 
than 6.6667 with respect to the comparison in (6.2.6), which does not satisfy the condition stipulated by (6.2.6), 
the testing is continued. 

Item 2 can now be chosen. In Table 8.2.2 a numerical summary is presented for the process resulting in 
the choosing of Item 2. Notice that there are no entries in this table for g'" or g equal to 10, because Item ^<" 
has already been used in this tailored test. In column (1) the subscripts of the items in the ability bank are 
presented. Columns (2), (3), and (4) provide the parameters a^(v\), b^(v\), and c^. These parameters are 
appropriate for e*(v[) or standardized ability subsequent to the incidental effect of explicit selection on Z|,,o, 
as specified in the outcome vector vj. The parameters are obtained from (6.1.1), (6.1.3), and (6.1.6) for n equal 
to 2 where each of the unused items is potentially Item 2. The required inputs for these equations are a* b* 
and c* as given in Table 8.1.2, and /xO* \ v[) and (T(0* | V\) or 111.7567 and 16.8063, respectively. Column 
(5) presents the correlation between Z^(v[) and 0*{v\), p(Z^,e | vj), as provided by (6.1.7) for n equal to 2; 
because each unused item in the ability bank is potentially Item 2. The point of dichotomization on Z^(v[)— 
standardized Z^{v[) after the effect of incidental selection due to explicit selection on Z|,io)—, y^(v\), is given 
in column (6). This point of dichotomization is obtained most readily by the row-wise multiplication of columns 
(3) and (5), which, within rounding error, results in the identical output of (6.1.9) under the circumstance that 
Item 2 is being sought. The density in the standard normal distribution at y^^vl), (i>[y^{v\)], is given in column 
(7). This density is obtained by evaluating (6.1.11) for n equal to 2. The probability that this individual will 
recognize the correct answer to multiple-choice item g, Pp\), is provided in column (8) and is obtained from 
(6.1.16) given the circumstance that Item 2 is sought. Column (9) presents the probability that this individual 
will not recognize the correct alternative to multiple-choice item g, Q^{v\). This probability is obtained most 

Table 8.2.2 
Numerical Summary for the Choosing of Item 2 

(') (2)^ (3) (4) (5) (6) (7) (8) (9) (10) (H) (i2) 
!T    ,"/^t    !'/fi      /,'.   piz,.e\v\)   y,(v\)   4>[yM)]   PM)     QM)     P'M)    ^«^-^(0*|v;.t/;,)    „ 
te)       (6.1.1)"       (6.1.3)        (6.1.6)        (6.1.7)        (6.1.9)     (6.1.11)    (6.1.16)    (6.1.19)    (6 114) '   (6 2   ) 

1 1.5625 -3.1080 .16 .8423 -2.6178 .0130 .9956 .0044 .9963 276.0 2 1.8813 -2.8446 .23 .8830 -2.5118 .0170 .9940 .0060 .9954 274.2 
3 1.4988 -2.5812 .21 .8318 -2.1471 .0398 .9841 .0159 .9874 266.9 4 1.9213 -2.3177 .22 .8870 -2.0559 .0482 .9801 .0199 .9845 261.9 
5 1.6741 -2.0668 .19 .8585 -1.7744 .0826 .9620 .0380 .9692 251.2 
6 1.7220 -1.8536 .17 .8648 -1.6029 .1104 .9455 .0545 .9548 241.4 
7 1.6421 -1.6278 .22 .8541 -1.3903 .1518 .9178 .0822 .9359 234.3 
8 1.8574 -1.3142 .15 .8805 -1.1572 .2042 .8764 ,1236 .8949 212.3 
9 
10 

1.4747 -1.0508 .16 .8277 -.8697 .2733 .8078 .1922 .8385 207.1 

11 1.6662 - .5490 .14 .8574 - .4707 .3571 .6811 .3189 .7257 184.1 
12 1.9931 -.3107 .22 .8938 -.2777 .3839 .6094 .3906 .6953 187.0 
13 1.7458 - .0598 .13 .8677 -.0519 .3984 .5207 .4793 .5830 177.4 
14 1.6502 .1660 .20 .8552 .1420 .3949 .4436 .5564 .5548 199.0 
15 1.4349 .4671 .14 .8204 .3832 .3707 .3508 .6492 .4417 204.1 
16 1.7778 .6552 .21 .8716 .5711 .3389 .2840 .7160 .4343 219.8 
17 1.4509 .9563 .13 .8234 .7874 .2926 .2155 .7845 .3175 225.2 
18 2.0169 1.2197 .20 .8959 1.0928 .2196 .1373 .8627 .3098 249.7 
19 1.5705 1.4329 .16 .8435 1.2087 .1922 .1134 .8866 .2552 254.9 
20 1.8176 1.7340 .18 .8762 1.5192 .1258 .0644 .9356 .2328 269.5 

"Numbers in parentheses indicate equations providing the column entries. 
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readily as the row-wise complement of column (8), that is [1 - P^(v\)], which is identically the output of 
(6.1.19) for this circumstance. Column (10) presents the probability that this individual will obtain a correct 
answer to multiple-choice item g, P,Uv|). These numerical values are obtained by evaluating (6.1.14) for n equal 
to 2 where each unused item in the ability bank is potentially Item 2. In column (11) one has the expected values 
of the variance of this individual's ability estimate, tu^: (^i^* I V\,U'H), given the probable outcomes for each 
unused item. Each expected value is obtained from (6.2.1) using 0^(0* | v\) or 282.4501 and the row-wise 
entries in columns (4), (5), (7), (9), and (10) as inputs. The minimum entry in column (11) is found in order 
to identify Item 2, the most informative second item for the tailored test. When responded to by this individual, 
Item 2 is expected to reduce most the variance of the ability estimate or, synonomously, to provide the maximum 
increase in precision given the available items. The minimum value of 177.4 identifies Item 13 from the ability 
bank as Item 2 in the tailored test. As a result, a 2 is recorded in column 12 and row 13 of Table 8.2.2. According 
to convention, then, g'^' equals 13. Under the selection or rejection analogy, explicit selection or rejection on 
Zjoi) subsequent to explicit selection on ZKIQ) is expected to restrict most the variance of ability for the selected 
or rejected subpopulation if explicit selection actually occurred in this sequence on Z2(v\). 

This individual then responds with a correct answer to Item 2. Thus, the outcome vector Vj contains the 
entries «;,io) = 1 and M2(I3) = ' where the tenth and thirteenth items in the ability bank have been aliased by 
the subscripts 1 and 2, respectively, within the tailored test. Because this individual's answer to Item 2 was 
correct, the estimate of ability can be revised using (6.2.2) where the required inputs are ^l(0* | v;) or 111.7567, 
o-(0* I v|) or 16.8063, and the unrounded values corresponding to the entries in Table 8.2.2 from columns (4), 
(5), (7), and (10) for g equal to 13, the subscript of the second aliased item. In this case, the evaluation of 
(6.2.2) provides 120.4269 as the updated estimate of this individual's ability, /A(0* | V2). Accordingly, the 
variance of this estimate of ability can be revised by evaluating (6.2.3) where the required inputs are 
(7^(0* I vl) or 282.4501 and the unrounded values corresponding to the entries in Table 8.2.2 from columns 
(4), (5), (6), (7), and (10) for n equal to 13, the subscript of the second aliased item. In this case, the use of 
(6.2.3) yields 200.7159 as the updated variance of this estimate of ability, 0^(0* | Vj). The error of this estimate, 
aiO* I V2), is 14.1674. Since 14.1674 is greater than 6.6667 with respect to the comparison given in (6.2.6), 
which does not satisfy the condition stipulated in (6.2.6), testing is continued. 

The third item can now be chosen. In Table 8.2.3, a numerical summary is presented for the process 
resulting in the choosing of Item 3. Notice that there are no entries in this table for g'" or g equal to 10 and g*^' 
or g equal to 13. The items with these subscripts are ineligible for subsequent use in this tailored test. In column 
(1), the subscripts for the items in the ability bank are given. Columns (2), (3), and (4) present the parameters 

Table 8.2.3 
Numerical Summary for the Choosing of Item 3 

(I) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Item af,(v'-,) bA^'i) ''H 
p(Z„e 1 v;) yM) *[>'.(V2)1 PM) QM) P'y.) %ya^(e* 1 v;,(/J) n 

(S) (6.1.1)" (6.1.3) (6.1.6) (6.1.7) (6.1.9) (6.1.11) (6.1.16) (6.1.19) (6.1.14) ■ (6.2.1) 

1 1.3171 -4.2989 .16 .7965 -3.4239 .0011 .9997 .0003 .9997 200.3 

2 1.5859 -3.9864 .23 .8459 -3.3720 .0014 .9996 .0004 .9997 200.2 

3 1.2635 -3.6739 .21 .7841 -2.8808 .0063 .9980 .0020 .9984 198.8 

4 1.6196 -3.3614 .22 .8509 -2.8602 .0067 .9979 .0021 .9983 198.3 

5 1.4112 -3.0638 .19 .8159 -2.4998 .0175 .9938 .0062 .9950 195.3 

6 1.4516 -2.8108 .17 .8235 -2.3147 .0274 .9897 .0103 .9914 192.4 

7 1.3843 -2.5430 .22 .8106 -2.0614 .0477 .9804 .0196 .9847 188.6 

g 1.5658 -2.1710 .15 .8428 -1.8297 .0748 .9663 .0337 .9714 180.0 

9 1.2432 -1.8585 .16 .7792 -1.4481 .1398 .9262 .0738 .9380 171.8 
1 

10 
11 1.4046 -1.2633 .14 .8146 -1.0291 .2349 .8483 .1517 .8695 152.8 

12 1.6801 - .9805 .22 .8593 -.8426 .2797 .8003 .1997 .8442 147.1 
2 

13 
14 1.3911 -.4151 .20 .8120 -.3370 .3769 .6319 .3681 .7056 142.8 3 

15 1.2096 - .0579 .14 .7707 - .0447 .3985 .5178 .4822 .5853 143.0 

16 1.4986 .1653 .21 .8318 .1375 .3952 .4453 .5547 .5618 145.7 

17 1.2231 .5224 .13 .7742 .4044 .3676 .3429 .6571 .4284 150.5 

18 1.7002 .8349 .20 .8620 .7196 .3079 .2359 .7641 .3887 162.6 

19 1.3239 1.0879 .16 .7980 .8681 .2737 .1927 .8073 .3218 169.8 

20 1.5322 1.4450 .18 .8374 1.2101 .1918 .1131 .8869 .2728 183.2 

"Numbers in parentheses indicate the equations providing the column entries. 
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a^{v2), b^(v2), and q, for these eligible items. These parameters are appropriate for 9*(v2) or standardized ability 
subsequent to the incidental effects of explicit selections on Z,(io)(vo), and Z2^nM) as specified in the outcome 
vector vj. The parameters are obtained from (6.1.1), (6.1.3) and (6.1.6) for n equal to 3 where each of the 
eligible items is potentially Item 3. The required inputs for these equations are a*, b*, and c* as provided in 
Table 8.1.2, and ju(0* | Vj) and a(e* | v^) or 120.4269 and 14.1674, respectively. In column (5), one has the 
correlation between Z,,(v2) and 0*(v2), p{Z„0 | Vj), as given by (6.1.7) because each unused item in the ability 
bank is potentially Item 3. The point of dichotomization on the continuous variable Z^(v2)—standardized Z (vj) 
after the effects of incidental selection due to the explicit selections on Z|,,o)(vo) and Z2,i3)(v;)—, y,(vf), is 
given in column (6). This point of dichotomization is most conveniently obtained by the row-wise multiplication 
of columns (3) and (5) which, within rounding error, results in the identical output of (6.1.9) under the circum- 
stance that Item 3 is being sought. The density in the standard normal distribution at y^.(v2), <^[T^,(V2)], is provided 
in column (7). This density is obtained by evaluating (6.1.11) for« equal to 3. The probability that this individual 
will recognize the correct alternative to multiple-choice item g, Pgivj), is presented in column (8) and is obtained 
from (6.1.16) given the circumstance that Item 3 is sought. Column (9) provides the probability that this individual 
will not recognize the correct alternative to multiple-choice item g, Q^iv!,). This probability is obtained most 
readily as the row-wise complement of column (8), that is [1 - P,(v2)], which is identically the output of 
(6.1.19) for this circumstance. Column (10) provides the probability that this individual will obtain a correct 
answer to multiple-choice item g, Pg{v2). These numerical values are obtained by evaluating (6.1.14) for n equal 
to 3 where each unused item in the ability bank is potentially Item 3. In column (11) one has the expected values 
of the variance of this individual's ability estimate, %^^a^(0* | V2,U'g), given the probable outcomes for each 
unused item. Each expected value is obtained from (6.2.1) using 0^(0* | Vj) or 200.7159 and the row-wise 
entries in columns (4), (5), (7), (9), and (10) as inputs. The minimum entry in column (11) is found in order 
to identify Item 3, the most informative third item for this tailored test. When responded to by this individual. 
Item 3 is expected to most reduce the variance of the ability estimate or, synonomously, to provide the maximum 
increase in its precision. The minimum value of 142.8 identifies Item 14 from the ability bank as Item 3 in this 
tailored test. As a result, a 3 is recorded in column (12) and row 14 of Table 8.2.3. Under the selection or rejection 
analogy, explicit selection or rejection on Z3(,4)(v2) subsequent to the explicit selection on Z,(,o,(vo) and 
Z2(i3)(»'i) is expected to restrict most the variance of ability for the selected or rejected subpopulation if explicit 
selection actually occurred in this sequence on Z3(|4)(V2). 

This individual then responds with an incorrect answer to Item 3. Thus, the outcome vector v, now 
contams the entries M;,IO) = 1, M2(I.I) = U «3(i4) = 0 where the tenth, thirteenth, and fourteenth items in the 
ability bank have been aliased by the subscripts I, 2, and, 3, respectively, within this tailored test. Because this 
individual's answer to Item 3 was incorrect, the estimate of ability can be revised by evaluating (6.2.4), where 
the required inputs are ^(0* | v^) or 120.4269, a{0* | v^) or 14.1674, and the entries in Table 8.2.3 from 
columns (5), (7), and (9) for g equal to 14, the subscript of the third aliased item. In this case, the evaluation 
of (6.2.4) yields 108.6462 as the updated estimate of this individual's ability,/i(0* | Vj). Accordingly, the 
variance of this estimate of ability can be revised through the use of (6.2.5) where the required inputs are 
a^(0* I V2) or 200.7159 and the unrounded values corresponding to the entries in Table 8.2.3 from columns 
(5), (6), (7), and (9) for g equal to 14, the subscript of the third aliased item. In this case, the use of (6.2.5) 
provides 107.6038 as the updated variance of the estimate of ability, o^(0* | Vj). The error of this estimate, 
a(0* I V3), is 10.3732. Since 10.3732 is greater than 6.6667 with regard to the comparison given in (6.2.6), 
which does not satisfy the stipulated condition of (6.2.6), the testing is continued. 

The fourth item can now be chosen. In Table 8.2.4, a numerical summary is provided for the process 
leading to the choosing of Item 4. Notice that there are no entries in this table for g<" or g equal to 10, g'-^'' or 
g equal to 13, and g^^^ or g equal to 14. These items are ineligible for subsequent use in this tailored test. In 
column (I), the subscripts for the items in the ability bank are presented. Columns (2), (3), and (4) provide the 
parameters a^iv^), b^iv^^), and q, for these eligible items. These parameters are appropriate for O^iv'^) or 
standardized ability subsequent to the incidental effects of the explicit selections on Z,(|o)(vo), Z2(,3)(v,'), and 
'?3(i4)(>'2) as specified in the outcome vector V3. The parameters are obtained from (6.1.1), (6.1.3), and (6.1.6) 
for n equal to 4 where each of the eligible items is potentially Item 4. The required inputs for these equations 
are a*, b*, and c| as provided in Table 8.1.2, ^l{Q* \ V3) or 108.6462 and cr(e* | v^) or 10.3732. In column 
(5), one has the correlation between Z^(v3) and 0*(v'^), p(Z^,0 \ vO, as given by (6.1.7), because each unused 
item in the ability bank is potentially Item 4. The point of dichotomization on the continuous variable Z,(v3)  
standardized Z^,(v3) after the effects of incidental selection due to the explicit selections on Z|,|o)(vo), Z2,,3,(v;), 
and Z3(,4)(V2)—, yg(vi), is given in column (6). This point of dichotomization is most readily obtained by the 
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Table 8.2.4 
Numerical Summary for the Choosing of Item 4 

(1) 
Item 
(K) 

(2) O) (4) (5) (6) (7) (8) (9) (10) (11) 
a{v',) hAv\) c-        p(Z,,0\v\)    y,«)     ^ly.O-;)]     P,(y\)       Q,(v',)       P'.iv',)      ^0^(0* \ v'^.U',) 

(6 11)"       (6 r^)        (6.1.6)        (6.1.7)        (6.1.9)     (6.1.11)    (6,1.16)    (6.1.19)    (6.1.14) (6.2.1) 

(12) 

1 .9644 -4.7356 .16 .6942 -3.2873 .0018 .9995 .0005 .9996 107.3 

2 1.1612 -4.3088 .23 .7577 -3.2649 .0019 .9995 .0005 .9996 107.3 

3 .9251 -3.8820 .21 .6791 -2.6362 .0124 .9958 .0042 .9967 106.2 

4 1.1859 -3.4552 .22 .7645 -2.6414 .0122 .9959 .0041 .9968 105.8 

5 1.0333 -3.0488 .19 .7186 -2.1908 .0362 .9858 .0142 .9885 103.4 

6 1.0628 -2.7033 .17 .7283 -1.9688 .0574 .9755 .0245 .9797 101.1 

7 1.0136 -2.3374 .22 .7119 - 1.6639 .0999 .9519 .0481 .9625 98.4 

8 1.1464 -1.8294 .15 .7536 -1.3786 .1542 .9160 .0840 .9286 91.8 

9 .9103 - 1.4026 .16 .6731 -.9441 .2555 .8274 .1726 .8551 89.5 
1 

10 
II 1.0284 -.5896 .14 .7169 -.4227 .3648 .6638 .3362 .7108 81.1 

12 
13 

1.2302 - .2035 .22 .7760 - . 1579 .3940 .5627 .4373 .6589 80.4 4 
2 

14 
15 .8857 1.0566 .14 .6630 .7005 .3121 .2418 .7582 .3480 92.6 

3 

■     16 1.0973 1.3614 .21 .7391 1.0062 .2405 .1572 .8428 .3342 98.1 

17 .8955 1.8492 .13 .6671 1.2336 .1864 .1087 .8913 .2245 100.4 

18 1.2449 2.2760 .20 .7796 1.7744 .0826 .0380 .9620 .2304 106.0 

19 .9694 2.6215 .16 .6960 1.8246 .0755 .0340 .9660 .1886 106.2 

20 1.1219 3.1092 .18 .7465 2.3210 .0270 .0101 .9899 .1883 107.4 

"Numbers in parentheses indicate the equations providing the column entries. 

row-wise multiplication of the entries in columns (3) and (5), an operation which, within rounding error, provides 
an output identical to that of (6.1.9) under the circumstance that Item 4 is being sought. The density in the 
standard normal distribution at y^,(vO, (/'[y.XvO], is presented in column (7). This density is obtained by evaluating 
(6.1.11) for « equal to 4. The probability that this individual will recognize the correct alternative to multiple- 
choice item g, Pgiv'i), is presented in column (8) and is obtained from (6.1.16) under the circumstance that Item 
4 is sought. Column (9) provides the probability that this individual will not recognize the correct alternative to 
multiple-choice item g, g^Cvj). This probability is obtained most conveniently as the row-wise complement of 
column (8), that is [1 - Pf,{v'j,)\, which results in the identical output of (6.1.19) for this circumstance. Column 
(10) presents the probability that this individual will obtain a correct answer to multiple-choice item g, P'g{vj). 
In obtaining these numerical values, (6.1.14) is evaluated for n equal to 4 where each unused item in the ability 
bank is potentially Item 4. Column (11) provides the expected values of the variance of this individual's ability 
estimate, %y0^i6* \ v^,U'i.), given the probable outcomes for each unused item in the ability bank. Each 
expected value is obtained by evaluating (6.2.1) where the required inputs are o^{6* \ v,) or 107.6038 and the 
row-wise entries in columns (4), (5), (7), (9), and (10). The minimum entry in column (11) is found in order 
to identify Item 4, the most informative fourth item for this tailored test. When responded to by this individual, 
Item 4 is expected to reduce most the variance of the ability estimate given the eligible items. Synonomously, 
Item 4 is expected to provide the maximum increase in precision, given the available items. The minimum value 
of 80.4 identifies Item 12 from the ability bank as Item 4 in this tailored test. Therefore, a 4 is recorded in 
column 12 and row 12 of Table 8.2.4. Under the selection or rejection analogy, explicit selection or rejection 
on Z4(,2)(v3) subsequent to explicit selections on Z„io)(vo) and Z2(i3)(v;) and explicit rejection on Z^(U)(v2) is 
expected to restrict most the variance of ability for the selected or rejected subpopulation if explicit selection 
actually occurred in this sequence on Z^^^2Mi)■ 

This individual then responds with an incorrect answer to Item 4. Therefore, the outcome vector V4 
contains the entries «;,,o) = L "lim = L "3(i4) = 0), and «;,,2) = 0 where the tenth, thirteenth, fourteenth, 
and twelfth items in the ability bank have been aliased by the subscripts I, 2, 3, and 4, respectively, within this 
individual's tailored test. Because this individual's answer to Item 4 was incorrect, the estimate of ability can 
be revised by evaluating (6.2.4) where the required inputs are /L(,(0* | VJ) or 108.6462, a(0* \ vO or 10.3732, 
and the unrounded values corresponding to the entries in Table 8.2.4 from columns (5), (7), and (9) for g equal 
to 12, the subscript of the fourth aliased item. In this case, the evaluation of (6.2.4) yields 101.3935 as the 
updated estimate of this individual's ability, pi(0* | v^). Accordingly, the variance of this estimate of ability 
can be revised through the use of (6.2.5) where the required inputs are cr(0* | V3) or 107.6038 and the unrounded 
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values corresponding to the entries in Table 8.2.4 from columns (5), (6), (7), and (9) for n equal to 12, the 
subscript of the fourth aliased item. In this case, the use of (6.2.5) provides 64.2195 as the updated variance of 
this estimate of ability, 0^(0* | v^). The error of this estimate, o-(©* | v^), is 8.0137. Since 8.0137 is greater 
than 6.6667 with regard to the comparison given in (6.2.6), which does not satisfy the condition stipulated in 
(6.2.6), the testing of this individual is continued. 

The fifth item can now be chosen. In Table 8.2.5, a numerical summary is presented for the process 
leading to the choosing of Item 5. Notice that there are no entries in this table for ^"> or g equal to 10, g<2) Q^ 

g equal to 13, g<3) or g equal to 14, and g<'*> or g equal to 12. These items are ineligible for subsequent use in 
this tailored test. In column (1), the subscripts for the items in the ability bank are presented. The parameters 
a,{v4), fe^(v;) and c, are presented in columns (2), (3), and (4) for the eligible items. These parameters are 
aippropriate for 0*(v;) or standardized ability subsequent to the incidental effects of explicit selections on ZmojCvo), 
-^(i3)(»'i). ■^3(i4)(»'2), and Z4,,2)(v3) as specified in the outcome vector v^. The parameters are obtained from 
(6.1.1), (6.1.3), and (6.1.6) for n equal to 5 where each of the unused or eligible items is potentially Item 5. 
The required inputs for these equations are a*, bf, and c* as provided in Table 8.1.2, JLI(0* | V^) or 101.3935 
and (7(9* \ v^) or 8.0137. In column (5), one has the correlation between Z/v^) and ©*(v;), p(Z„e \ v^), as 
given by (6.1.7) because as of now each unused item in the ability bank is potentially Item 5. The point of 
dichotomization on the continuous variable 4(»'4)—standardized Z,(v;) given the effects of incidental selection 
due to explicit selections on Z,(,o,(vi), Z^^^M)' Z3(i4)(v2), and Z^'^.^Jv',)—, y^(v',), is provided in column (6). 
This point of dichotomization is most readily obtained by the row-wise multiplication of the entries in columns 
(3) and (5), an operation that, within rounding error, provides an output identical to that of (6.1.9) under the 
circumstance that Item 5 is being sought. The density in the standard normal distribution at y^(v;), (/)[y,(v;)], 
is provided in column (7). This density is obtained by evaluating (6.1.11) for n equal to 5. The'probability that 
this individual will recognize the correct alternative to multiple-choice item g, P^(v:^) is given in column (8) and 
is obtained from (6.1.16) under the circumstance that Item 5 is sought. Column (9) provides the probability that 
this individual will not recognize the correct alternative to multiple-choice item g, Q^iv'^). This probability is 
obtained most conveniently as the row-wise complement of column (8), that is [1 - P^iv^)], which results in 
the identical output of (6.1.19) for this circumstance. Column (10) provides the probability that this individual 
will obtain a correct answer to multiple-choice item g, P'^iv'^). In obtaining these numerical values, (6.1.14) is 
evaluated for n equal to 5 where each eligible item in the ability bank is potentially Item 5. In column (11), one 
has the expected values of the variance of this individual's ability estimate, %y. CT^(0* | v^.t/;), given the probable 
outcomes for each eligible item. Each expected value is obtained by evaluating (6.2.1) where the required inputs 

Table 8.2.5 
Numerical Summary for the Choosing of Item S 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Item a,(vl) bM) <^, piz,.e\v',) y,«) 4>[yM)\ P.W QM) P',(^'d 'tu^o^iO* 1 v'^,U'^) n 
(g) (6.1.1)" (6.1.3) (6.1.6) (6.1.7) (6.1.9) (6.1.11) (6.1.16) (6.1.19) (6.1.14) (6.2.1) 

1 .7450 -5.2249 .16 .5974 -3.1216 .0031 .9991 .0009 ,9992 64.0 
2 .8971 -4.6724 .23 .6678 -3.1200 .0031 .9991 .0009 ,9993 64.0 
3 .7147 -4.1200 .21 .5814 -2.3955 .0226 .9917 ,0083 ,9934 63.2 
4 .9161 -3.5675 .22 .6755 -2.4099 .0219 .9920 .0080 ,9938 62.8 
5 .7982 -3.0414 .19 .6239 -1.8974 .0659 .9711 .0289 ,9766 61.1 
6 .8211 -2.5942 .17 .6346 -1.6462 .1029 .9501 .0499 ,9586 59.5 
7 .7830 -2.1206 .22 .6165 -1.3074 ,1697 .9045 ,0955 ,9255 58,0 
8 .8857 -1.4629 .15 .6630 - .9700 .2492 .8340 .1660 ,8589 53.8 
9 
10 

.7032 -.9105 .16 .5752 -.5237 .3478 .6998 .3002 ,7478 ' 54.6 

11 
12 
13 

.7945 .1418 .14 .6221 .0882 .3974 .4649 .5351 .5398 52.5 
1 
5 
4 

14 

15 .6842 2.2727 .14 .5647 1.2833 .1751 .0997 .9003 .2257 61.6 

2 
1 

16 .8477 2.6673 .21 .6466 1.7247 .0901 .0423 .9577 .2434 63.5 
17 .6918 3.2987 .13 .5689 1.8767 .0686 .0303 .9697 .1563 63.7  •' 
18 .9617 3.8511 .20 .6932 2.6695 .0113 .0038 .9962 .2030 64.2 
19 .7489 4.2983 .16 .5994 2.5765 .0144 .0050 .9950 .1642 64.2 
20 .8667 4.9297 .18 .6549 3.2287 .0022 .0006 .9994 .1805 64.2 

"Numbers in parentheses indicate the equations providing the column entries. 
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are o^{0* \ V4) or 64.2195 and the row-wise entries in columns (4), (5), (7), (9), and (10). The minimum entry 
in column (11) is sought in order to identify the most informative fifth item for this tailored test. The minimum 
value of 52.5 identifies Item 11 from the ability bank as Item 5 in this tailored test. Thus, a 5 is recorded in 
column 12 and row 11 of Table 8.2.5. Under the selection or rejection analogy, explicit selection 
or rejection on Z5(ii)(v4) subsequent to explicit selections on Z|(io)(vo) and Z2(i3)(''i) ^nd explicit rejections on 
^(,4)(v2) and 2'4,|2)(V3) is expected to restrict most the variance of ability for the selected or rejected subpopulation 
if explicit selection on Zi(\\){v'4) actually occurred in this sequence. 

This individual then responds with an incorrect answer to Item 5. Hence, the outcome vector V5 contains 
the entries M[,IO) = 1, "2(13) = '> "3(i4) = 0' "4(12) = 0' and MJ,,,) = 0 where the tenth, thirteenth, fourteenth, 
twelfth, and eleventh items in the ability bank have been aliased by the subscripts 1,2,3,4, and 5, respectively, 
within this tailored test. Because this individual's answer to Item 5 was incorrect, the estimate of ability can be 
revised by evaluating (6.2.4) where the required inputs are /x(0* | V4) or 101.3935, cr{0* \ V4) or 8.0137, and 
the unrounded values corresponding to the entries in Table 8.2.5 from columns (5), (7) and (9) for g equal to 
11, the subscript of the fifth aliased item. In this case, the evaluation of (6.2.4) yields 97.6917 as the updated 
estimate of this individual's ability, yu,(0* | Vj). Accordingly, the variance of this estimate of ability can be 
revised through the use of (6.2.5) where the required inputs are CT^(0* | V4) or 64.2195 and the unrounded values 
corresponding to the entries in Table 8.2.5 from columns (5), (6), (7), and (9) for n equal to 11, the subscript 
of the fifth aliased item. In this case, the use of (6.2.5) yields 48.8885 as the updated variance of this estimate 
of ability, a^{0* | V5). The error of this estimate, a{0* \ V5), is 6.9920. Since 6.9920 is greater than 6.6667 
with respect to the comparison given in (6.2.6), which does not satisfy the condition stipulated in (6.2.6), the 
testing is continued. 

The sixth item can now be chosen. In Table 8.2.6, a numerical summary is provided for the process 
resulting in the choosing of Item 6. Notice that there are no entries in this table for g'" or g equal to 10, g*^' or 
g equal to 13, g*-" or g equal to 14, g'"*' or g equal to 12, and g'^' or g equal to 11. These items are ineligible 
for subsequent use in this tailored test. In column (1), the subscripts for the eligible as well as the ineligible 
items in the ability bank are presented. The parameters a^iv'^), b^iv'f,) and c^, for the eligible items are provided 
in columns (2), (3), and (4). These parameters are appropriate for 0*{v'^) or standardized ability subsequent to 
the incidental effects of explicit selections on Z,,io)(vo), Z2(\j,)(v'i), Zi(]4){v2), Z4(i2)(v3), and Z^(\[)iv'4) as specified 
in the outcome vector V5. The parameters are obtained from (6.1.1), (6.1.3), and (6.1.6) for n equal to 6 where 
each of the unused or eligible items is potentially Item 6. The required inputs for these equations are a* b* 
and c* as provided in Table 8.1.2, /u,(0* | Vj) or 97.6917, and (7(0* | V5) or 6.9920. In column (5), the correlation 

Table 8.2.6 
Numerical Summary for the Choosing of Item 6 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Item «,(";) b,(y;) '■,< 

p{Z,,0\ v',) r,(v.;) <*[7,(v;)l PM') QM)   p'y^) %n:0^(e* 1 v'.M',) n 
(g) (6.1.1)" (6.1.3) (6.1.6) (6.1.7) (6.1.9) (6.1.11) (6.1.16) (6.1.19) (6.1.14) (6.2.1) 

1 .6500 -5.4589 .16 .5450 -2.9752 .0048 .9985 .0015 9988 48.7 
2 .7827 -4.8257 .23 .6163 -2.9743 ,0048 .9985 .0015 9989 48.7 
3 .6235 -4.1926 .21 .5291 -2.2183 .0341 .9867 .0133 9895 47.9 
4 .7993 -3.5594 .22 .6244 -2.2224 .0338 .9869 .0131 9898 47.6 ■■ 

5 .6965 -2.9564 .19 .5715 -1.6896 .0957 .9544 .0456 9631 46.2 
6 .7164 -2.4438 .17 .5824 -1.4232 .1449 .9227 .0773 9358 44.9 
7 .6832 -1.9011 .22 .5641 -1.0724 .2245 .8582 .1418 8894 44.0 
8 .7728 -1.1473 .15 .6115 -.7015 .3119 .7585 .2415 7947 41.0 6 
9 
10 

.6136 -.5141 .16 .5230 - .2689 .3848 .6060 .3940 6690 42.6 

1 
11 
11 

5 
4 

13 2 
14 3 
15 .5970 3.1342 .14 .5126 1.6066 .1098 .0541 .9459 1865 48.1 
16 .7396 3.5865 .21 .5946 2.1327 .0410 .0165 .9835 2230 48.8 
17 .6036 4.3101 .13 .5168 2.2273 .0334 .0130 .9870 1413 48.8 
18 .8391 4.9433 .20 .6428 3.1775 .0026 .0007 .9993 2006 48.9 
19 .6534 5.4558 .16 .5470 2.9843 .0046 .0014 .9986 1612 48.9 
20 .7562 6.1795 .18 .6032 3.7272 .0004 .0001 .9999 1801 48.9 

"Numbers in parentheses indicate the equations providing the column entries. 
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between Z^iv'^) and 0*(v5), piZg,0 | v,), is presented. This correlation is obtained from (6.1.7) for n equal to 
6 because each unused item in the ability bank is potentially Item 6. The point of dichotomization 
on the continiious variable Z^Cvj)—standardized Z^iv^) after the effects of incidental selection due to explicit 
selections on Z,(,o)(vo), ZjinjCvl), Z,(|4,(V2), Z^^^2)(v':i), and Z5(,|)(v;)—, y^,(V5), is provided in column (6). This 
point of dichotomization can be conveniently obtained through the row-wise multiplication of the entries in 
columns (3) and (5). This multiplication provides, within rounding error, an output that is equal to that of (6.1.9) 
given the circumstance that Item 6 is being sought. The density of the standard normal distribution at -/^.(vj), 
(l>[yg(v's)], 's presented in column (7). This density is obtained through evaluating (6.1.11) for n equal to 6. The 
probability that this individual will recognize the correct alternative to multiple-choice item g, Pf,{v'^), is given 
in column (8). This probability can be obtained from (6.1.16) given that Item 6 is sought. The probability that 
this individual will not recognize the correct alternative to multiple-choice item g, Q^(v'^), is provided in column 
(9). This probability can be most readily obtained as the row-wise complement of column (8), that is, 
[1 - Pgiv's)]. This complement is identically the output of (6.1.19) for this circumstance. The probability that 
this individual will obtain a correct answer to multiple-choice item g, P'giv'^), is presented in column (10). In 
obtaining these numerical values, (6.1.14) is evaluated for n equal to 6 for each available item in the ability 
bank. In column (11), one has the expected values of the variance of this individual's ability estimate, 
%^^' cP-{0* I v'i,U'g), given the probable outcomes for each available item. Each expected value is obtained by 
evaluating (6.2.1) where the required inputs are 0^(0* | V5) or 48.8885 and the row-wise entries in columns 
(4), (5), (7), (9), and (10). The minimum entry in column (11) is located in order to identify the most informative 
sixth item for this tailored test. The minimum value of 41.0 identifies Item 8 from the ability bank as Item 6 in 
this tailored test. Therefore, a 6 is recorded in column 12 and row 8 of Table 8.2.6. Under the selection or 
rejection analogy, explicit selection or rejection on Z(,^f,){vs) subsequent to explicit selections on Z|,,o)(vo) and 
■^(,3)(vj) and explicit rejections on Z^(\A)(V'2), Z4(|2)(v3), and Z^(_\i)(v'^) is expected to restrict most the variance 
of ability for the selected or rejected subpopulation if explicit selection on Z5(8)(V5) actually occurred in this 
sequence. 

This individual then responds with a correct answer to Item 6. Thus the outcome vector v^ contains the 
entries: MJdO) = I, "2(13) = 1- «3(i4) = 0, u'm2) = 0, MJ,,,) = 0, and u'(,^^^ = 1 where the tenth, thirteenth, 
fourteenth, twelfth, eleventh, and eighth items in the ability bank have been aliased by the subscripts 1, 2, 3, 
4, 5, and 6 within this tailored test. Because this individual's answer to Item 6 was correct, the estimate of 
ability can be revised by evaluating (6.2.2) where the required inputs are /x(0* | v,) or 97.6917, a(0* \ Vj) or 
6.9920, and the unrounded values corresponding to the entries in Table 8.2.6 from columns (4), (5), (7), and 
(10) for g equal to 8, the subscript of the sixth aliased item. In this case, the evaluation of (6.2.2) yields 99.1180 
as the updated estimate of this individual's ability, /u,(69* | V5). Accordingly, the variance of this estimate of 
ability can be revised through the use of (6.2.3) where the required inputs are cP-{0* \ V5) or 48.8885, and the 
unrounded values corresponding to the entries in Table 8.2.6 from columns (4), (5), (6), (7), and (10) for g 
equal to 8, the subscript of the sixth aliased item. In this case the use of (6.2.3) yields 42.5762 as the updated 
variance of the estimate of ability, o^(0* | v^). The error of this estimate, cr(0* \ v^), is 6.5250. Since 6.5250 
is less than 6.6667 with respect to the comparison given in (6.2.6), which now satisfies the condition stipulated 
in (6.2.6), the test is concluded. The item subscript at the termination of testing for this individual, q , is thus 
6. 

8.3. Summary of Test Results 

In Table 8.3.1, a summary is presented for the test that was tailored to this individual. Column (1) 
provides the order in which items were chosen and presented within the tailored test. This order of presentation 
was indexed by the subscript n. In column (2), the subscripts ^•"' are presented for the items chosen from the 
ability bank to form this tailored test. The individual's binary scores on the chosen items, M,',|^(n)|, are recorded 
in column (3). In column (4), the /x(0* | v,',), the estimates of this individual's ability are given. The variances 
of these estimates, the o^(0* | v,',), and the errors of these estimates, the a(0* \ v'„), are presented in columns 
(5) and (6), respectively. In the row where n equals 0, the initial estimate of the individual's ability, /Lt(0* | VQ) 

or 100.0000, the variance of this estimate, o^(0* | VQ) or 444.4444, and the error of this estimate, cr(0* | VQ) 

or 21.0819, are recorded. In the row where n equals 1, and reading from left to right, the following are recorded: 
the ability bank subscript for Item I, 10; this individual's binary score on Item 1 or Item 10 from the ability 
bank, u\^^Q^ or 1; the estimate of this individual's ability given the binary score, p.{0* \ v\) or 111.7567; the 
variance of this ability estimate given this binary score, a^{0* \ vj) or 282.4501; and the error of this ability 
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Table 8.3.1 
A Summary of the Tailored Test for Individual i 

(1) 
Item (2) (3) (4) (5) (6) 
(«) S"" ""IK I M(0*|v,') cr^ce* 1 v;,) (7(6* 1 v;,) 

0 100.0000 444.4444 21.0819 
1 10 1 111.7567 282.4501 16.8063 
2 13 1 120.4269 200.7159 14.1674 
3 14 0 108.6462 107.6038 10.3732 
4  ;. ■ 12 0 101.3935 64.2195 . 8.0137 
S 11 0 97.6917 48.8885 6.9920 
6 8 1 99.1180 42.5762 6.5250 

Note, q, = 6, (1,(0* \ v.^) = 99.1180, a^O* \ K) = 42.5762 = (.0958) o^(0* | v^), 
€- = (6.6667)- ='44.4448 = (.1000) (T-(0* ] v,',). 

estimate given the binary score, (T{0* \ vj) or 16.8063. Notice in tliis tabular presentation that the outcome 
vector, v'q., is summarized in a sequential or row-wise fashion in columns (1), (2), and (3). For instance, the 
second entry in this vector was «2(i.i) = 1 which is identically the information recorded in columns (1), (2), and 
(3) in the row where n equals 2. The other entries in this row are; the individual's ability estimate after two 
items ix{0* \ Vj) or 120.4269; the variance of this estimate a^{&* | V2) or 200.7159; and the error of this estimate 
a{0* I v'2) or 14.1674. Accordingly, the third entry in the outcome vector, v^ , was «3,i4) = 0 which is identically 
the information contained in columns (1), (2), and (3) in the row where n equals 3. The other entries in this 
row are; ^i(0* | V3) or 108.6462, the individual's ability estimate after three items; o^(0* | V3) or 107.6038, 
the variance of this ability estimate; and a{0* | v,) or 10.3732, the error of this ability estimate. Analogous 
interpretations apply with respect to the remaining rows in Table 8.3.1. However, the row where n corresponds 
to <7,—6 for this individual—has added significance. The entry in this row and in column (4) or 99.1180 is this 
individual's "official" estimate of ability since its associated error or 6.5250 was less than e or 6.6667. 
The value of e is the specified level of precision. In column (5) of this row, a within-individual variance of 
42.5762 is reported. This numerical value corresponds to (.0958) CT^(0* | VQ) which closely approximates 
(. 1000) (j^{0* I v6), or 6', 44.4448. The squared terminal error e^ sets the lower bound to the index of reliability 
for the results obtained through the tailored testing process. The lower bound to the index of reliability as well 
as its implications for practice was discussed earlier in Chapter 7. 
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